
www.manaraa.com

DOCUMENT RESUME

ED 059 894 SE 013 378

AUTHOR Kreisel, Georg

TITLE Five Notes on the Application of Proof Theory to

Computer Science.

INSTITUTION Stanford Univ., Calif. Inst. for Mathematical Studies

in Social Science.

REPORT NO TR-182

PUB DATE Dec 71

NOTE 52p.

EDRS PRICE MF-$0.65 HC-$3.29

DESCRIPTORS *Artificial Intelligence; *Computer Science;

Deductive Methods; *Logic; Logical Thinking;

Mathematics; Philosophy

ABSTRACT

The primary aim of these five technical papers is to

indicate aspects of proof theory which may be of use in the study of

non-numerical computing. The three main papers are entitled:

"Checking of Computer Programs;" "Consistency Proofs and Programs for

Translators;" and "Experiments with Computers on the Complexity of

Non-numerical computations." The author shows that many theorems on

computability in traditional metamathematics are of little use to the

computer scientist because they do not lead to feasible algorithms.

He also suggests alternative approaches to proof theory which would

be of greater applicability. pm

www.manaraa.com

FIVE NOTES ON THE APPLICATION OF PROOF THEORY

TO COMPUTER SCIENCE

BY

GEORG KREISEL

TECHNICAL REPORT NO. 182

DECEMBER 10 1971

U.S. DEPARTMENT OF HEALTH.
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THF DERSON OR ORGANIZATION ORIG.
INmTING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

..iNgiTuTE,FoR.:mATHEmATtcAL,...sTu.og5 IN THE Sal,ALiSicIENCES*

.'.TANFORD UNWERS.ITr

.H.FmFoRp:, :.CALI.Fo.RN IA

tia

www.manaraa.com

TECHNICAL REPORTS

PSYCHOLOGY SERIES

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

(Place of publication shown In parentheses/ If published title is different from title of Technical Report,
this is also shown In parentheses.)

(For reports no. I.- 44, pee Technical Report no. 125.)

50 R. C. Atkinson and R. C. Ca !fee. Mathematical learning theory. January 2, 1963. (In B. B. Wolman (Ed.), Scientific Psychology. New York:
Basic Books, Inc..,1965. Pp. 254-275).

51 P. Suppes, E. 'Crothers, and R. Weir. Application of mathematical learning theory and linguistic analysis to -Jewel phoneme matching in
Russian words. December 28,1962.

52 R. C..Atkinson, R. Calfee, G. Sommer, W..Jeffrey and R. Shoemaker. A test of three models for stimulus compounding with children.
January. 29., 1%3. (.i. exe. Psychol . , 1964, 67, 52-58)

53 E. Crothers. General Marker models for learning wIth inter-trial forgetting. April 8;1963:
54 J. L. Myers and R. C. Atkinson. Choice behavior and reward structure. May 24, 1963. (Journal math. Psychol., 1964, 1, 170-203)
55 R. E. Robinson'. A set-theoretical approach to empirical Meaningfulness of measurement statements. Jiine 10, 1963.
56 E. Crothers, R. Weir and P. Palmer. The role of transcription In the learning of the orthographic representations of Russian sounds. June17.,. 1963.
57 P. Suppes. Problems of optiMization in learning a list of simple items. July 22,1963. (In Maynard W. Shelly; II and Glenn L. Bryan (Eds.),

Human Judgments and Optimality. New York: Wiley. 1964. Pp. 116-126)
58 R. C. Atkinson and E. J. Crothers. Theoretical note: all-or-none learning and intertrial forgetting. July 24,1963.
59 R. C. Calfee. Long-term behavior of rats under probabilistic reinforcement schedulei. October 1,1963.
60 R. C. Atkinson and E. J. Crothers. Tests of acquisition and retention, axioms for paired-associate learning. October 25,1963. (A comparison

of paired-associate learning models having different acquisition and retention axioms, J. math. Psychot. , 1964, 285-315)
61 W. J. McGill and J. Gibbon.. The.general-gamma distribution and reactice times. November 20,1963. U. math. Psychol., 1965, 2, 1-18)
62 M. F. Norman. Incremental lestning on random trials. December 9,1963. (J. math. Psychol., 1964, c336-35I)
63 P. SupPes. The development Of mathematical uoncepts in children. February 25,1964. (On the behavioral foundations of mathematical conceWs.

Monographs of the Society for Research In Child Development, 1965, 30, 60-96)
64 P. Suppas. Mathematical concept formation In children. Arr1110, 19647 (Amer. Psychologist, 1966, 21,139-150)
65 R. C. Calfee, R. C. Atkinson, and T. Shelton, Jr. Mathematical models4cy-)terbal learning. August 21,1964. (In N. Wiener and J. P. Schoda

(Eds.); Cybernetics of the Ner.rous System: Progress In Brain Research. Amsterdam: Tfieffetheda,ods: Elsevier Publishing Co.;1965.
Pp. 333-349)

66 L. Keller, M. Cole, C. J. Burke, and W. K. Estes. -Paired associate learning with differential rewards. August 20, 1964. (Reward and
information values of trial aUtcorres In paired associate learning. (Psyche!. Monogr., 1965, 79,1-21)

67 M.F. Norman. A probabilistic model for free-responding. December 14, 1964.
68 W.. K. Estes end H. A. Taylor. Visual detection In relation to display size and redundancy of critical elements. *January 25,1965, Revised

7-1-65. (Perception end Psychophyslcs, 1966, 1, 9-16) .

0.7 F. Suppe; and J. Dente. Foundationi of mulus-sampling tlittay fat aaatiiraous-tinld 7.rtr"'...Sacs. Fabeuarif 9,19G5. (J. matN. Psycho:. , 1967,
4, 202-225)

70 R. C. Atkinson and R. A. Kinchla. A learning model for forced-choice' detection experiments. February 10; 1965. (Br. J. math stat.
1965,18,184-206)

71 E. J. Crothers. Presentation orders for items.from different categories. March 10, 1965.
72 P. Suppes, G. Green, and M. Schlag-Riy. Some models For response latency In paired-associates learning. May 5, 1965. (J. math. Psychol.,

1966, 3, 99-128).
73 M. V. Levine. The generalization function in the probability !earning experiment. June 3,1965.
74 D. Hansen and T. S. Rodgers. An exploration of psycho:linguistic unlit In.initial reading. July 6,1965.
75 B. C. Arnold. A correlated urn-scheme for a continuum of responses. July 20,1965.
76 C. !sawn and W. K. Estes. Reinforcement-test sequences In pired-associate learning. August 1,1965. (Psythol. Reports , 1966, 18, 879-919)
77 S. L. Blehart. Pattern discrimination learning'with Rhesus monkeys. Septenther 1, 1965. (psYchoi. Reports, 1966, 19, 311-324)
78 J. L. Phillips and R. C. Atkinson. The effects of display size on shert-trum memory. August 31,1965.
79 R. C. Atkinsonsand R. M. 5hiffrIn. Mathematical models far memory and learning. September 20,1965.
80 P. Suppes'. The psychological foUndations of matheMatIcs: October 25,1965. (Colloques.Internationaux du Centre National de la Recherche

Scientifique. Editions du Centre National de laRecherche Scientifique. Paris:1967: Pp. 213-242)
Ell P. Suppes. Camputer-assisted Instruction in the schools: peteritialities, problems, prospects: October 29,1965.
82 R. A. Kinchla, J. Townsend, J. Yellen, Jr., and R. C. Atkinson. Influence of correlated visual cues: on auditory signal detection.

November 2,1965. .(Perception and Psychophysics, 1966, I, 67-73)
83 P. Suppes, M. Jerman, and G. Green.. Arithmetic drills and review on a computer-based teletype. November 5,1965. (Arithmetic Teacher,

April 1966, 303-309.
64 P. Suppes and L. Hymen. Concept learning with non-verbal geometrical .stimul _ November 15; 1966.
85 P. Holland. A variation on the minimum chl-square test. (J. math. Psychol., 1967, 3, 377-413).
86 P. Suppes. Accelerated program In elementarY-school mathematics the Second year. Noventher 22,1965. (Psychology hi the Sehools, 1966,

3 294-307)
87 P. Lorenzen and.F. Binford. Logic as a dialogical game. November 29,1965.
88 L. Keller, W. J._Tliomson, J. R. TweedY, and R. C. Atkinson. .The effeets of reInforceMent interval on the acquisitiol e paired-associate

responses. December 10, 1965. .(J. exp. Psychal., 1967; 73, 2687277)
89 J. I. Yellott, Jr. 'Some effects on noncontingent'success In human probability learning. 'December 15, 1965.

90 P. Suppes and G. Groan. SOMe counting modala far first-gride performanie deta'on siMple addition facts. January 14, 1966. (In'J. M. Scandura
(Ed.), Research In Mathematics Education. Washingten, D. C.: NCTM, 1967; Pp. 35-43.

91 P. Snipes: InformaTron remessing and choice behavior. Janum)i 31,1966.
92 G. Green and R. C. Atkinson. Models for-optimizing the learning procies:. February 11,1966. (Psyehol..Bulletin, 1966, 66, 309-320)
93 R. C.. Atkinson and D. Hansen. Computer7assisted instruction in initial reading: Stanford project. March 17, 1966. (Reeding Research .

Quilts*, 1966, 2, 5'25)-
94 P. Suppes. Probabilistic Inference and the concept of total evidence. March 23,1966. (In J. Hintikka and P. Suppes (Eds.), Aspects of

Inductive Logic. Amsterdam North-Holland Publishing Co. ,1966. PP. 49-65.
95 P. Suppes. The axiomatic method In high-school matheniatic: Ajell 12,1966.. (The Hole'of Axiomtics and Problem Solving in.Mathematlos.

The Conference Boerd of the Mathematical Sciences, Washington, D. C. Ginn and Co., 1966. Pp. 697;76.
(Continued On inside back cover)

www.manaraa.com

FIVE NOTES ON THE APPLICATION OF PROOF THEORY
TO COMPUTER SCIENCE

by

Georg Kreisel

U.S. DEPARTMENT OF HEALTH,
EDUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROMTHE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW OR OPIN-
IONS STATED DO NOT NECESSAPILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

TECHNICAL REPORT NO. 182

December 10, 1971

PSYCHOLOGY AND E1DUCATION SERIES

Reproduction in Whole or in Part Is Penmitted for

Any Purpose of the United States Government

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCTFINCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

3

www.manaraa.com

Table of Contents

Introduction 1

Note I. Basic Notions and Distinctions 5

Note II. Checking of Computer Programs: An Example of

Non-numerical Computation

Note III. Consistency Proofs and Programs for Translators

15

21

Note IV. EXperiments with Computers on the Complexity of

Non-numerical Computations 26

Note v. Remarks on Relevant Proof-theoretical Literature 35

4

www.manaraa.com

Five Notes on the Application of Proof Theory

to Computer Science
1

Georg Kreisel

Institute for-Mathematical Studies in the Social Sciences

Stanford University

Introduction.
2

Let me begin with a manifesto. As will be evident

throughout these notes my background is in proof theory: not in computer

science. However--and this fact might easily confuse the reader--my in-

terests here are almost diametrically opposite to those of most logicians

who publish on computer science. There will be little general mathematics;

and what there is, will always be subordinate to the applications, as I

understand them. I realize quite well that professional computer scien-

tists (that is, people paid by computer science departments or affluent

firms) are often as much attracted by beautiful generalfties about compL-

tation as my fellow logicians. Perhaps they can afford it because, through

experience, they have devE.loped judgment on the relevance of these gener-

alities. Evidently I cannot hope to have this kind of judgment. Be that

as it may, let me set out here theoretical reasons for the philosophy

followed in these notes.

We know of course that tlere is something common to proof theory

and computer science: the formal rules studied in proof theory and the

computation rules, both for numerical and non-numerical computation, studied

in computer science are mechanical; indeed, the basic 'gra:ad' idea behind

formalization was the mechanization of mathematical reasoning, long before

an even approximate physical realization oftifis idea by electronic machines

could be proposed. Turing's analysis of the notion of mechanical rule in

terms of an (idealized) machine led to recursion theory, the mathematical

theory of mechanical rules or, at least, of functions definable by such

rules03 Consequently, general results 'about' mechanical rules will be

applicable both to formal fules (in proof -hheorY) and computational rules.

In particular, this applies to well-known recursive unsolvability results.

1

5

www.manaraa.com

But no sUbject (except possibly some mathematics) lives on negative

results. They indicate what not to do. This is the content of the

slogans: Proof theory begins where recursion theory ends, and similarly

for computer science. More soberly, by picking out specific, 'narrow'

subclasses from among all mechanical rules we shall find those that are

relevant to proof theory and those (others) relevant to computer science.

For example, in proof theory the significant results are about specific

formal systems. The brutal well-known ones, so-called Frege-Hilbert

style axiomatic systems, are picked out by the mathematical content of

the so-called non-logical symbols in the axioms (relation, function

symbols); the sophisticated ones, discovered by Gentzen and Prawitz

are picked out by an operational meaning assned to the logical symbols.

In computer science there are additional conditions on feasibility (com-

plexity of programs, length of computation.. It stands to reas-in that

for those narrower classes of rules more significant positive results

are possible. To use slightly hysterical language: if there simply

aren't general positive results (to be found for the class of all re-

cursive functions), there just isn't a possibility of a 'deep' study

of the general case,,

The other extremeor, better, errorthat has to be avoided is

sometimes expressed by saying that 'computation is an art'. What is

meant, in terms of the preceding paragraph, is that there are no rational

or theoretical principles for choosing relevant classes of rules (formal

systems, respectively computation rules).4 I believe that experience in

proof theory may be of heuristic if indirect value here. The early hope

in proof theory was that we could use a partial but very simple criterion

for choosing formal systems, namely, their completeness for the intended

interpretation. For example, when Artin and Schreier produced their

axioms for real closed fields (which seemed adequate for current algebra)

th0_r successful choice appeared like magic. Tarski's discovery that

these axioms produced precisely those (first order) statements which are

true for the field of real numbers, gave a truly satisfactory explanation

of the choice made by Artin and Schreier. (I do not know if Tarski em-

phasized this aspect.) It is an explanation because each theorem of

2

www.manaraa.com

current algebra was expected to be valid for the reals. Now GFdel's

incompleteness theorem shows that the simple criterion of completeness

cannot be used for the choice of formal systems for arithmetic, analysis,

set theory, etc. This does not at all mean that there is no principle

of choice; only it will have to be subtler than mere completeness. Be-

sides, even when, as in the case of first order classical predicate cal-

culus, we have formal systems complete w.r.t. validity, there are many

different aximatilations (as already mentioned, completeness makes only

a partial, in fact, rather brutal choice). The further choices needed,

a..id made by Gentzen or Prawitz, are just of a quite different order of

sophistication. Also, the discovery of significant 'subsystems' of

analysis in the literature is incomparably more sophisticated than, say,

that of (complete) systems for dense orderings (I use the word 'subsystem'

current in the literature: actuall2,' every formal system is a subsystem of

the set of true statements if the'formal language contains arithmetic).

Needless to say it is riot claimed that the same considerations are

relevant to the choices of both formal systems and computation rules.

Quite simply: at least in the most articulate parts of proof theory the

choices are made on epistemological grounds, that is, according to the

kind of understanding needed to recognize the validity of principles

(axioms or rules); the complexity of iterating these principles is rarely

a principal object of research. In computer science the complexity is

paramount. So one of the main problems will be to find the parts of

proof theory that are useful to computer science. The particular exam-

ples mentioned in the last paragraph are illustrations only; not only

of difficulties (of finding formal rules and of judging the choice) but

also of solutions to these difficulties, at least in some cases.5

It should also be remembered that, quite apart from the philosophical

aims mentioned,proof theory often looked for systems fairly close to our

ordinary reasoning. This suggests a further reason why quite different

principles of choice are neederl, simply on the assumption that human

reasoning (or, in crazy language, 'information processing by the brain')

has a different structure from mechanical computers: for example, very

mechanical instructions confuse the human computer. The practical effects

3

www.manaraa.com

of this simple observation are far reaching: The mere fact that we find

it easy to solve some class of problems in, say, propositional calculus

is no reason at all for supposing that they are easy for a computer; or,

more formal]y, that there exists a short program. So it is not even easy

to judge whether we are stupid when we are not able to mechanize reasoning

which is easy for us. In fact, Section 4 contains proposals for studying

such questions. The principle adopted is the s;:Lplest in the world: The

single must surprising innovation of logical foundations is the reduction

of our mathematical Irocabulary: Does this destroy the practical possibility

of reasoninE?

Finally, a word on terminology. I shall not use the jargon of com-

puter science (and shall try to avoid most proof theoretic jargon, except

in the title of Section 3 which uses both). First of all, I don't Inow

it well enough--FremdwOrter sind GlUcksache. Secondly, perhaps in order

to compensate for the 'inhumanly' systematic character of computer lan-

guages, computer jargon is full of quite different words for distinct,

but closely related ideas, like compiler and translator. I should prefer

a civilised language with a word for the common idea (translator) and

adjectives to qualify it.
6 Thirdly, soma terms suggest, it seems to me,

a sensational but ill considered aim, for example, 'theorem proving'.

(For those who know the catechism, an outward and visible sign of an inward

and invisible disgrace.) I shall use 'non-numerical computing' or the name

of the particular area where I believe such computing to be appropriate,

for example, in the currently active subject of mechanical checking of

programs (Section 2). Evidently there is nothing sensational in the idea

of a 'mere' checking of a computer program, much less so than in checking

mathematical proofs which are prima facie (and probably intrinsically)

non-mechanical. But, by being less sensational the idea is perhaps also

more feasible.

4

www.manaraa.com

I. Basic Notions and Distinctions

NB. According to temperament the reader can either glance through

this note before reading the others or simply go bE%ck to it when one of the

basic notions or distinctions is actually needed.

I shall consider here principally (computation and proof theory in

connection with) arithmetic problems, and discuss afterwards modifications

ne-eded in other contexts. Since we have 2000 years of experience in nu-

merical computation it should be easy to judge whether our general considera

tions are truly applicable (and not only aesthetically or theoretically

pleasing).

1. General orientation. To describe the relation between the aims

of computer science and proof theory brieflyj one can use the slogans:

Theory (or principles) of formalist mathematics

versus

Formalist theory (or reduction) of mathematics.

Computer science has as its Objects (formal) calculations and tries to

develop a theory of these Objects. The intended meaning of, say, an

equation a = b is that the formal Objects a and have been or can be

reduced, by given formal rules, to the same term (their formal value).

In contrast, proof theory, as originally understood, tries to establish

that, for a different (mathematical) meaning --)f the formula a = b,

a = b is true for that meaning if (and, possibly, only if)

a and b have the same value.

Example. Suppose we are given the formal rules for addition in arithmetic,

with the symbol 0 and the successor syMbol s: a + 0 --)a, a -I- sb -.)s(a + b).

Then 0 + sO = (s0) 1- 0 means7 that each side can be reduced to the same

term, namely sO (by using the second and first rule resp.).

The expressions a + b and b + a with variables a and can

evidently not be reduced to the same term by means of the rules above.

Suppose, however, we interpret7

(*) a +b=b+ a

5

www.manaraa.com

to mean: for each pair of numerical terms (0,s0,ss0,...) n and m,

n + m and m + n have the same formal value for the rules of addition

above. Then, for example by the well-known Presburger-algorithm, there

are formal rules generating all equations which are true about computa-

tions (in the sense abeve); but it is not enough to use the axioms:

a + 0 = a, a + sb = s(a + b) 'corresponding' to the rules of addition.

In the modern proof theoretic literature (for example, under the

slogan operative Logik or operatjpnal logic) there is a great deal of

material which is not directly relevant to the original aims of proof

theory, but rather provides a theory of formal rules; it extends the

interpretation (*) of equations to logically complicated formulae. The

theory does not deal with special properties of computation rules actually

used in, say, arithmetic, but with general Post-rules. (Evidently., the

rules for numerical addition are set out as Post rules.)

This theory is coherent and has great aesthetic appeal. I have no

idea of its usefulness to computer science, simply because it is not clear

whether computationally interesting properties of (computation)rules are

expressed 2y1 the logically complicated formulae used (in contrast to

commutativity in the example above, a property of addition which we use

all the time, e.g., when checking the addition of columns in different

order).

The theory is often presented, particularly by Curry, in connection

with a formalist reduction of mathematics. As a result it is usually

(i) not taken seriously by those who find such a reduction implausible

(though the theory is not at all needed for such a reduction) and (ii)

not examined for its interest qua theory of formal rules (though, if it

has such an interest, this would be independent of formalist doctrine;

after all, some mathematics we do, unquestionably has formalist character,

for example,, computing). Some defects of the notions used in that theory

will be apparent from the next paragraph.

2. Computations. Anyone who has read this far, has no doubt a pretty

good idea of what a computation rule or camputatjon diagram is (for terms

insomelanguageLlthediagramtakestheformt, 1 < i < N

t. containing 'meta' variables). There arc a relatively mall number

6

www.manaraa.com

of useful notions about and, consequently, distinctions between various

kinds of computation diagrams which are scattered in the literature and

perhaps not even explicit.

(a) Numerical and non-numerical computation (of numerical valued

terms) or: the choice of computation diagram. In computations we normally

use well defined functions and rules which give a numerical value, that is,

a value 0, sO ss0 ... or, more usually, a value in decimal or binary

notation. In short there is a standard or normal form. This fact is used

a good deal in the theoretical literature.

It should be noted that the use of normal forms is, in practice if

not in theory, in conflict with the practical requirement that answers to

(numerical) problems must be comprehensible. Thus while

101000

1000
or even: the largest prime < 10

are comprehensible answers, neither of the standard representations above

would do.

More formally, practical computation diagrams 'for' the exponential

function or for the so-called bounded least number operator (used in the

two examples above) must not permit further reduction; in other words,

though normal forms exist they must not be used. But it seems difficult

at this stage to be much more specific about an efficient choice of normal

forms; cf. also III Pc and III §3a. The reader should note that the choice

of language, stressed throughout these notes in connection with proofs

('automatic theorem proving') is also significant for computation.

Technical remark. If one wants to, one can easily state same pre-

cise 'general' theorems here. Given any of the usual codes for partial

recursive functions, we consider non-numerical terms, built up from these

codes, for computing numbers (for 'functions' with zero arguments!); for

example, by use of Kleene's bracket notation. In this way every recursive

function f is represented by a rudimentary function from numerals n

(not to numerals but) to codes of the value of f(n). However, there

is no evidence that this particular general scheme of using non-numerical

terms is also efficient.
8

7

www.manaraa.com

(b) Consistency of computation rules w.r.t. (a congruence relation

between) normal forms. For any term t, if t can be reduced to the

normal (irreducible) terms t
1

and t
2

then t
1

and t
2

must be

congruent.

Examples. One familiar class of examples comes from computation rules

which are (i) valid for, say, an arithmetic interpretation, that is, there

are functions which satisfy the given rules in the sense of footnote 7

and (ii) non-congruent normal terms denote distinct Objects in the inter-

pretation. Outside arithmetic, a well-known example is provided by combina-

tory logic. (This may be relevant to computer science because Curry's

explicit intention was to analyze the basic steps in human mathematical

reasoning in terms of combinatbrs... Even if this intention is absurd,

the possibility remains that this analysis applies to formal operations

which Curry assumed to constitute mathematical reasoning.9)

Warning. In the light of (a), consistency (in the present and

current sense!) is not a necessary condition for a computationally ade-

quate diagram.

(c) Computability and strong computability (w.r.t0 the notion of

normal, that is, irreducible form determined by the computation diagram

itself). Some, resp every sequence of applications of the computation

rules to any term t stops after a finite number of steps; that is,

it reaches a term to which no further reduction can be applied.

Evidently, rules can be perfectly valid in the sense of b(i) without

possessing even the (weak) computability property; for example, in case

of addition, we may have added: lby.Mistakel : a a + O.

(d) Hilbert-Post completeness (of the congruence relation'between

normal forms). If, for two non-congruent normal terms t
1

and t
2'

the rules t
1

--4t
2

and t
2

--4t
I

are added to the computation diagram

then all terms become interreducible.

This is a specialization of the traditional notion of Hiibert-Post

completeness for arbitrary formal systems: if a non-derivable formula

is added to the formal rules then all formulae became derivable. (In

the case of computation rules the only relevant formulae are equations.)

www.manaraa.com

Discussion. The idea behind the Hilbert-Post notion is this: to

establish maximality of the rules considered with a minimum of assump-

tions about the intended meaning (or, as formalists like to say, fuses')

of the formal rules. As is well known, most familiar H-P complete sys-

tems satisfy--like classical propositional calculus--the abstractly

stronger conditions: For each formula F there is a substitution instance

F
1

for which either F
1

or F
1

is derivable. Also, quite often, we

simply know enough about the intended meaning, e.g., of classical predi-

cate (or, for that matter, propositional!) calculus to know that we have

enough formal rules even if they are (or were) not H-P complete. Simi-

larly, in view of (a), we shall not, in general, expect computation dia-

grams to be H-P complete if we have chosen them after careful analysis of

practical requirements.

3. (Formal) deductions. Once again (as in §2), the reader may be

assumed to know what a formal system or, equivaleutly, a system of deduc-

tion rules is10 As in §2, we may distinguish between the problems con-

nected with (analyzing) given formal systems and with choosing formal

systems; cf. Pa concerning the choice of computation rules and even of

the concept of normal form. So much is clear.

Now there is a further element of choice, namely, the choice in the

order of applying (compUtation and deduction) rules. Certainly not all

computation rules need be deterministic; if we want to compute 0.t,

for a complex term t we may either first work out the numerical value

of t and apply the recursion rules for multiplication or we may apply

the rule 0.a -)0 (if the latter is included; the recursion rules will

always be included). Again, if we have a rule for computing a function of

two arguments there is a choice in the order in which the arguments are

treated. But it may be expected that within such a well-organized frame-

work as a system of computation rules, this:freedom of choice causes little

havoc. In contrast, as we know from experience in mathematics, being given

formal deduction rules is of little help. (In the analyses below of the

'help' involved the lettering of subsections does not correspond to §2.)

(a) Looking at deductions and searching for deductions (in a given

formal system). Without wishing to be 'mathematical' in an affected sort

9

13

www.manaraa.com

of way, I'll begin by setting out the distinction in the form of two

kinds of computation diagrams.

Evidently, since operations on deductions are involved, the dbjects

or 'terms* of the computation diagram will be (whole) deductions/ not,

say, derived formulae.

Case 1 (the familiar set-up). This is relevant to a search for

deductions. We start with: d -4d' if (the deduction figure) d' is

dbtained from d by adding a formula which is an immediate consequence

of formulae in d; 'immediate' by application of the given rules.

There is no end to this procedure, and an independent criterion has

to be added to create a semblance of a computation diagram with its ir-

reducible or normal forms. What is indeed Implicit in our ordinary way

of thinking is that we wish to decide some formula A: Writing -4/
A

we add the reztriction d -)cv only if d -)at and d contains neither
A

the formula A nor the formula -IA (because in either case the search

is over).

Note that the questions of §2a in connection with a choice of ir-

reducible forms have a parallel here. Specifically, d need not con-

tain the formula A itself but say a formula A' which is propositionally

equivalent to A. This induces a congruence relation between 'normal'

forms, that is, derivations containing A' or (-1A)'. The concepts of

§2(b)-(d), with scomputability' replaced by 'formal decidability (of A)'I

are self-explanatory. What makes formal rules of 'little help' is that

for the usual formal rules (with modus ponens and without 'strategies',

that is, additional rules of choice) we do not have strong computability.

This is a good negative criterion; but of course strong computability is

not enough practically if the execution of the computation is not prac-

tical.

Case 2 (the sophisticated set-up). This is relevant to the analysis

of (given) deductions. According to previous training the reader may

think here of cut-elimination or elimination of redundancies where, in

aptly-named natural deductions, an introduction (of a logical operation)

is followed immediately by its elimination. In both cases we shall speak

of a normalization step. The computation diagram runs as follows:

10

14

www.manaraa.com

a)d' if a, is obtained from a by applying a single reduction

step.

Now, in contrast to Case 1 d can be irreducible, namely, if it

is in normal form. Note here, for the normalization steps mentioned,

d and d' automatically have the same end formula. The concepts of

§2(b)-(a) distinguish between different normalization procedures. For

example, it is open whether, in familiar systems, cut-elimination rules

are strongly computable, even when the allegedly 'equivalent' natural

deduction rules are.
11 Naturally the terminology, e.g., of 'consistency'

in §2b is meaningful only if the choice of the normalization procedures

themselves is intended to respect some preassigned meaning of the normal

deductions. The terminology is justified if non-congruent deductions are

intended to express different proofs (in the ordinary sense of 'difference

of proof' as used, e.g.) in arguments about plagiarim) and normalization

steps are supposed to preserve identity of proofs.

(b) Conflicting requirements. Quite naively, it would be surpriSing

that the same criterion, for example, the selection of normal derivation,

should be useful for both the analysis of given deductions and for the

discovery of new deductions of some given formula. Perhaps one should not

ignore the ridiculous-sounding advice of MathematiCians ,(who'are. after all,

well known to be terribly inarticulate outside their own domain) such as:

one must not be too logical in research. As in footnote 4 of the intro-_
auction, precise and merely logically satisfactory formulation& may be

much worse than no formulation at all because their defect is likely to

be not obvious irrelevance but something subtler.

Example. In the discussion of Case 1 in (a) above, failure of

strong computability of the usual formal rules was mentioned; they are

wildly indeterminate. On the other hand, normal derivation rules or the

rules introduced by Herbrand are essentially deterministic: a formula

determines very closely from which premise it must be deduced if it has

a normal derivation at all. But as already mentioned, this is no reason

at all for supposing that normal derivation rules (which were introduced

for the analysis of given proofs) should also provide efficient
12

deter-

ministic search procedures.

11

15

www.manaraa.com

The practical conclusion which I.have drawn from this dbservation

and which I apply in Notes 2 and 3 iF to look for areas where the analysis

of given deductions is relevant.

(c) Digression on search procedures (to be taken up in Note 4)., The

Immediate purpose of this digression is to serve as a kind of mental

hygiene. There is a natural, quite traditional aim, to find a theory of

mathematical reasoning. Through formalization it is possible to restrict

this (evidently hopelessly) general aim to, say, reasoning within some

limited context such as predicate logic. In addition we have some iso-

lated quite striking examples. For example, the logical theorems at the

beginning of Principia fall into simple decidable classes for whj.ch; as

dbserved by Wang; there is a quite effective mechanization. True, these

theorems do not at all have the look of typical mathematical theorems,

But as long as no alternatives are set out, there is a lurking doubt:

Shouldn't something similar be possible for much wider and more interesting

areas? It may well be objected that; even if, dbjectively, such a possi-

bility exists, this is no good reason why any particular person should

pursue it; he may not have the necessary talent or he may have more taaent

in another area. But it seems to me reasonable to present some alternatives

which could remove the doubts without the appeal to self-analysis macl_e

above.

We are able to prove or refute quite a large number of formulae F

in predicate logic with great ease. Often we are not aware of having fol-

lowed a method.

The lurking doubt is:

There ought to be a mechanical method, applicable to a large class

C of formulae of predicate logic, which will also decide the formulae in

F in a reasonable time (where the greater speed of electronic computers

is to make up for the subroutines supposedly stored y the human computer).

Usually one makes the additional assumption that the class C is charac-

terized by such syntactic conditions as prefix complexity or the number of

arguments of the relation symbols used.

Proposal. Granted that; in simple cases, we are not aware of follow-

ing a method, let's look at the nature of the methods which are used when

we do!

12

16

www.manaraa.com

The very first method that strikes one when inspecting the facts is

the extension of the language. (Indeed:, no inspection is needed, because

the principal step taken in the formalization of ordinary intelligible

reasoning was a reduction of the language!) Here we have two quite dif-

ferent applications, which are both logically insignificant, but in dif-

ferent senses, as made precise below.

Definitional extensions. We consider consequences from axioms

say for real closed fields. We extend the language by a binary relation

symbol 0 (to stand for 'order') and derive a number of implications of

the form A
0 0

where A
0

are axioms for an ordering. We make the

definitional extension

VxVy[0(xy) az(y = x + z2)]

and derive from ® the formula Ao. Each B
0

is then demonstrably

equivalent (on the basis of qi.)) to a formula in the language of fields.

These extensions are logically insignificant in the sense that (not

only in the present case, but under very general conditions) the introduc-

tion of the symbols can be eliminated. But: at what cost? for example,

in length of derivation? The example is by no means farfetched: it is

simply the formal counterpart to saying that our proofs are guided by
2N

the meaning of the relation az(y = x + z). Amusingly, electronic com-

puters furnish an excellent means for answering this question of cost!

Cf. Note 4.

Introducing abstract concepts (in the sense of higher type or set

theory). We can use the language of the previous example, and consider

ordered fields, i.e., the axioms Ao and the axioms for fields (among

To derive B
0

we may proceed as follows. We use the fact that

every ordered (ground) field has a real closure. This is a set theoretic

statement. We can naw apply set theoretic constructions to this real

closure and then deduce results about the ground field. As a quite trivial

illustration consider "a simple formula of predicate logic. Writing

< for 0 and p for the general polynomial of degree n.

A<)Vx1...Vx11.4aUM(x.<xi.4.1 A px:cpxj+1 < 0)] < pxn
spxn 1)

l<i<n

www.manaraa.com

A set theoretic proof proceeds by embedding the ground field in its

realclosurewilerepxi.px <
1+1

A pz = 0) and

using the fact that a polynomial of degree n has at most n zeros.

In contrast to the first example, the present use of set theoretic

concepts is logically insignificant (in the sense of being eliminable)

for the quite special reason that first order predicate calculus is

complete. Of course the theorem above has also a first order proof,

in fact a quite simple one. We need only use Lagrange's formula

and observe that

n+1 jp(x)
p(x.) x x. /

1<i<n 1 j
.

/i J

n+1 j

cVk J

has different signs when k = I and when k = i + 1. But it is a

subject for research to see whether in general the use of set theoretic

methods is decisive for feasibility, that is, for effective execution in

time and space by an electronic computer or for intelligibility by a

human one. (I have in mind mathematically or logically intelligible

theorems, not the kind of ad hoc formulae usually constructed in the

literature on 'speed-up'.)

Preview. As the reader will see, only Notes 2 and 3 contain genuine

applications of proof theory. Both analyze given deductions, illustrating

the two important directions in proof theory, the methods of normalization

and interpretation resp. In Note 4 we experiment on search procedures,

using facts from proof theory merely as a guide for the design of

experiments.

www.manaraa.com

II. Checking of Computer Programs: An Example
of Non-numerical Computation

We shall consider principally, but not exclusively, programs for

solving some arithmetic problam with a parameter, n say. In terms of

I §2(c) and I §3(a) the formal counterpart to the informal distinction

between checking and proving (the validity of) a program is this:

Checking a program is a decidabl,a procedure, by use of strongly

computable rules; a check provides indeed a proof, by very elementary

rules, of

(*) the function defined by the program solves the pronolem for all n.

In contrast, for the usual formal rules of inference, it is not (recursively)

decidable whether or not a universal statement of the form (*) is de-

rivable. This corresponds to the meaning of 'checking as a procedure

which does not require ingenuity (in contrast to 'cross checking' which

does, but which need not constitute a complete check).

It will be best to begin with a closer look at the familiar ideas

of 'arithmetic problem' and 'solution', including the choice of language

used to present the solution; cf. I § 2(a)0 The reader should not forget

for one moment that, in the context of checking, the program and our

knowledge of its properties are the principal Objects of study; we are

not merely concerned with the sequence of states of the machine which

the program, objectively, determines; and a fortiori, not merely with

the graph of the function which the machine puts out; cf. footnote 3

of the Introduction.

1. Numerical analysis and programmation. The general form of an

arithmetic problem (which we consider here) is

EmA(n,m) with parameter n

wnere the relation A may be defined by use of quite abstract concepts;

for example, it may say that m is (a code for) an approximation, -to

accuracy 1/n, to the solution, at the origin Say, of same differential

equation in Hilbert space.

Numerical analysis, by use of proofs not merely by mechanical checking,

provides more or less explicit solutions in terms of a function f (of n)

www.manaraa.com

n
determined in familiar terms, for example, 2 or [log n] (the integral

part of log n). One sometimes says that numerical analysis provides an

algorithm; but, strictly speaking, the algorithm is only tacitly under-

stood because in numerical estimates not the procedure of calculation but

only the values of the function are relevant. In fact, numerical analysis

provides in general not an algorithm but rather a simple functional equa-

tion for f .which suggests an algorithm, e.g., in the case of 2n

Vp[f(0) = 1 A f(p + 1) = 2f(p)]

Numerical analysis has done its job when it finds such a functional property

or equation cl(f) and a proof of

f) -4.A(n,fn)

(In §3c below we give some formal conditions ensuring that does

deteimine an algorithm.)

Programmation consists in making explicit, in mechanical terms, the

algorithm 'suggested° by the property Roughly speaking, checking

a proposed program rf consists in establishing by the elementary methods

implicit in the idea of checking that rf satisfies Our problem

here consists in making explicit what these elementary methods are. This

involves of course some general conjecture on the type of properties

which occur in practice (but not on the type of relation

The following example does not merely illustrate the difference

between numerical analysis and programmation, but gives a good idea of

the qualitative difference between a recursive and a feasible solution,

discussed at length at the end of Note 1.

Instead of the single variable n9 we consider the quadruples

n
1'

n
2-9

n3 and n and the relation

24.n' 2+n' 2+nl 2+n° 2+nl 2+n'
= 0 & n

1
+ n

2
= n

3
) V (m = 1 & n

1
+ n

2
/ n

3
)

Without numerical analysis, we have the obvious program of °simply

evaluating'

2+n' 2+nt 2+nl
n
1

+ n
2

and n-
3

1.6

20

www.manaraa.com

for given positive integers nl, n2; n3 and n' and 'comparing' them.

The program must translate these instructions to the machine. With

numerical analysis, that is a (partial or complete) proof of Fermat's

conjecture, we should use a totally different program (for the same

function of n n
2'

n3 , n'!) namely

n12 n
2'

n
3,

n' 1 .

Amusingly, on the basis of current knowledge,
13

as far as existing com-

puting machinery is concerned, only the second program is feasible (for

numerical computing): for those numbers for which Fermat's conjecture

is open at least one of the numbers n
24-n'

1
n
2+111

2
and n is so

a-FnI

3
large that it could not be stored in any machine's memory at all! A

hluch more sophisticated example will be given in IV §2b.

2. Formalization of the concept of 'checking': definitional

equality (brutal approach). To start with, I want to convey an idea

for such a formalization which a programmer, relying on his judgment and

experience, may occasionally decide to use. It is evident that any appli-

cation will depend on the programming language; that is, what precisely

the symbol 7 stands for in §1; and the possibly non-numerical terms

(cf. I §2a) chosen to present the (numerical valued) solution in the

particular application. I should try to refer the formalization to

theories of programming languages or of (non-numerical) notation systems

for natural numbers if I were convinced that any known theory is even

remotely correct. As it is, the chance of introducing a systematic

error by relying on current theories seems more damaging than the vague-

ness which results from giving .oh ly. an illustration (as I do below).

In the next section I shall try to discuss limitations.

Proposal. Assume that the critical properties § of §1 supplied

by numerical analysis are conjunctions of equations ti = ti (1 < i < N)

between terms built up from f; the numerical variable p; and signs

for specific programs (constants, successor operation, addition; multi-

pliAation etc.). Assume further that; for any program rf and any term

t[r] built up from rf, p and the signs for specific programs (as

above), a program is assigned to t[7]. Then we define:

17

www.manaraa.com

r
f

is checked for if for each i, 1 < I < N 9 the

same programs are assigned to [u] and V[7].

The question whether or not the same program is assigned to two terms is

supposed to be decidable, and this constitutes the elementary character

of 'checking'.

Remark. It is familiar from recursion theory that for quite

elementary formal systems, specifically any consistent r.e. extension

of formal primitive arithmetic PRA, it is not decidable whether an equation

between two terms containing a variable (p) is formally provable since

the sets

(t
1-
.t

2
t
1
= t

2
) and (t

1,
t
2.

. 2n t
1
[p/n] t

2
[p/n])

PRA PRA

are recursively inseparable. (Here n ranges over numerical terms and

t[p/n] is the result of substituting n for the variable p in t.)

Illustrations. Probably the reader understands the proposal pretty

well, that is, the ideas of: program assigned to a term, and identity

criteria for programs or, equivalently, definitional equality between

terms. For deepening his understanding he should look at the relevant

literature cited in footnote 9 of Note 1. Finally, since in terms of

I §3a we are looking here at genuine, terminating programs only, perhaps

an even better illustration of (or approximation to> proposed applications

would be got from a language in which eyerz term denotes a terminating

program, as is the case with typed combinators; for arithmetic problems

one adds (typed) recursion operators014 Whatever their mathematical appeal

(or use in other contexts) the usual combinators do not seem to present

any advantages here; specifically the definability(of an (even) type free

recursion operator does not seem worth the price of introducing expres-

sions for which one does not know whether or not the corresponding program

terminates. And--perhaps this is a principal point--it cannot be assumed

that the BASIC IDEA OF THE WHOLE PROPOSAL (which comes from the familiar

experience of knowing whether or not two familiar definitions denote the

same program) EXTENDS UNAMBIGUOUSLY TO TEE UNFAMILIAR (full) LANGUAGE

18

www.manaraa.com

of combinators. So without any prejudice against future theoretical

studies on this point, I suggest that the reader concentrate on strongly

camputable computation diagrams in the sense of I §2(c).

Example. We suppose descriptions of programs to be given by terms

built up from typed combinators (of type: 0 -40); cf. footnote 9 of

Note 1. Two such terms denote the same program if and only if their

(unique) normal forms are congruent, that is, the normal forms are

canonical or standard descriptions of programs. Since each term has a

normal form, the required decision can be carried out by working out the

normal forms.

Corollary (to footnote 12 of Note 1). For practically efficient

solutions it wdll be necessary to find (sub) classes of terms for which

an equivalent but computationally simpler-criterion of definitional

equality can be given. Naturally, as in footnote 14 above, the equivalence

proof need not at all be elementary.

3. Discussion of the formalization (proposed in the last section).

(a) At first sight the sense of checking seems to be unduly narrow. In

fact, a program rf is, of course, a perfectly good solution even if

7
f

does not check § but simply satisfies §. The justification for

the narrow definition, though simple, is often overlooked.

If, as a matter of empirical fact, programmers tend to

write programs which do check the conditions discovered

by numerical analysis, it makes good practical sense to

exploit this fact.

In this sense the proposal involves an (empirical) hypothesis about

programmers which has to be verified.

(b) Note, however, that the notion of definitional equality(on which

the formalization is based) is rather wide unless we are planning to use

the program for a large number of values of p. It ignores the steps

needed to go from the description t[r] to its normal form, that is,

to the program described, or, equivalently, to its canonical description.

It is of course conceivable that an even sharper notion of checking is

valid which is based on a narrower notion of definitional equality;

19

www.manaraa.com

'valid in the practical sense above of being respected by actual program-

mers. The discovery of such a notion would probably be at least as use-

ful as the kind of mathematical discovery considered in the Corollary at

the end of §2.

(c) Concerning the general hypothesis on the form of functional

properties supplied y numerical analysis (according to §1), one

can distinguish three kinds.

(i) The equations, read fram left to right, translate into strongly

computable computation rules; this is the case in the example given:

f(0) -31, f(p + 1) -32f(p) (when supplemented y rules for doubling:

2.0 -30, 2(p+1) -3(((2p) + 1) + 1)).

(ii) that is, V00(10,f) provides a finite
15

definition of f,

that is; Ihnanaga(VID < ci)§0(p)f)] -)fm = n)-

In this case f is recursive ut the equations in t.10 do not necessarily

provide a camputation diagram.

(iii) Conceivably numerical analysis provides a .1 that defines f

uniquely but not computationally, for example,

Vp[f(p) = 2f(p + 1)] .

Only f = 6, i.e., Vp[f(p) = 0] can satisfy this condition since if

f(p) = k, f(p + k) = k.2-k which is not integral. But, presumably,

the numerical analyst will himself provide this little argument and thereby

replace the condition by

VP[f(P) = 0) .

(d) Concerning the existence of genuine uses of the present proposal

there can, of course, be no doubt inasmuch as I was able to appeal to

such familiar material as exponentiation or doubling (only the range

of application is in doUbt). For the same reason the weakest point in

the illustration is the use of mathematically 'interesting' and therefore

unfamiliar material, such as the typed cambinators with recursion. No

doubt more experienced people would be better able to judge at the present

stage.

20

24

www.manaraa.com

III. Consistency Proofs and Programs for Translators

The kind of 'translator' meant here is supposed to start from a

(formal) language relatively close to actual reasoning in arithmetic

practice and to go over to computer programs. As a matter of empirical

fact, actual reasoning uses non-constructive principles; as is well known

the relation between non-constructive proofs and 'corresponding' programs

is problematic. Roughly speaking, consistency proofs and their develop-

ments solve these problems; in fact, this kind of use of consistency

proofs is often considered to constitute their mathematical significance.
16

Since the mathematics involved has been developed actively over half

a century, it will be possible to be quite brief by referring.to the

literature. The main point of interest is to indicate in what respects

the existence of fast computers offers new (practical) uses for some of

the existing consistency proofs, or makes developments desirable which

would have no value to the human computer.

1. Generalities. (a) To avoid confusion when reading the literature

the point made already in the introduction must not be forgotten: the

official purpose of consistency proofs (formulated by Hilbert for philo-

sophical reasons) is not only irrelevant to computer science but contrary

to computer interests; cf. also footnotel4 of Note 2. Hilbert's aim was

to show, by elementary metamathematical methods, that if a universal

statement 7.trxA (with primitive recursive A) is non-constructively

provable then (*) each numerical instance can be checked by computation.

But for the computer it is quite sufficient to know the fact (*); he

gains nothing from knowing an elementary proof. The fact alone permits

him to add an additional computation rule, namely, the subroutine: when-

ever A[x/n], for numerical n, is supposed to be worked out (by computa-

tion) the additional rule says: write 'true'. From the illustration in

II §2 in connection with Fermat's conjecture, it is clear that a computer

scientist (that is, numerical analyst) who knows only elementary constructive

methods of proof is liable to be at a disadvantage here: he could not justify

the use of this subroutine which can greatly shorten the work; more pedan-

tically) which shortens the work whenever computations of A[x/n] are

21

www.manaraa.com

needed for many n and we have a non-constructive, but no elementary

proof of VxA. . The 'constructivist' could, at best, make the empirical

prediction that the subroutine will 'work'.
17

(b) In point of fact, most of the metamathematical studies 14hich are

described as 'consistency proofs' establish more. For arithmetic problems

in the sense of II §1 but with A restricted to decidable relations they

provide provide an explicit scheme for defining number theoretic functions

such that

If p is a derivation (in the non-constructive system) of

amA(n,m) they provide TT defined by means of the scheme

such that VnA(n7 n).

Of course, once again the mere validity of the rules considered

(when applied to arithmetic) is sufficient to ensure the existence of

a program um quite independently of any hypothetical proof p of

amA(n,m), namely,

Compute A(n,0) A(n,1), ... until you find an m
n

such

that A(n,m
n

) holds.

If amA(n,m) is (seen to be) true (by non-constructive means) the program

terminates (or: is seen, by the same means, to do so).

In view of the irrelevance to computer science of the metamathematical

methods used, only a detailed study can decide whether the program supplied

by lip is more efficient than Trp,.. (It is tempting to say here that one

surely knows 'more' if one knows a proof p than if one merely knows the

truth of amA(n,m); sure, but is this additional knowledge computationally
18\

relevant?)

Remark. In terms of II §1 the justification of the program 7

requires numerical analysis. Suppose § is the functional property

used for the defining equations of 7 then we have to have shown:
P'

(f) A(nfn) .

In contrast, the program up, requires no numerical analysis.

(c) It is well known that for logically more complicated relations

A(n,m), of the form

VqB(n,m,q)

22

26

www.manaraa.com

(B primitive recursive), linEmA may be non-constructively provable,

but there is simply no recursive function f at all which satisfies:

VnA(n,fn). In this case, 'consistency' proofs for the non-constructive

princip1e6 considered, may be used to provide constructive interpretations,

discussed at length in the papers cited in footnote 16 above.

In general the value of these interpretations is purely logical.

Specifically, and this is in sharp contrast to (b) above, for logically

complicated A., the non-constructive meaning of l'hamA may be (mathe-

matically) interesting--bien entendu: to the non-constructive mathema-

tician who understands this meaning!--but the constructive interpretation

(of VnamA) is of no interest--to anybody. So the principal problam

here is to look for those cases which ar intsting.

EXception (from the Digression on p.1: 135-136 of the paper cited

in footnote 2 of the introduction). Little has to be added to Herbrand's

constructive interpretation of classical predicate calculus to convert

Roth's non-constructive proof
19

of the well-known Thue-Siegel-Roth theorem

into the refinement by. Davenport-Roth.19 This refinement was of interest

inasmuch as its authors decided to devote a separate paper to it.

2. Programming translators: the present evidence. (a) There is

no shadow of doubt of the usefulness of (knowing) consistency proofs.

People working in number theory, quite consciously and explicitly, wanted

to know bounds for existential theorems proved by non-constructive means

and, as a matter of historical fact, got lost when trying to obtain these

bounds without theoretical knowledge of consistency proofs: the(ir)

light of nature was not enough. Without having to apply the theoretical

knowledge in detail, just having the general principles in mind, made

it easy, in accordance with footnote 8 of Note 1, to Obtain the desired

bounds. But this does not yet constitute a reason for actually program-

ming a translator; quite trf.-Tially, inasmuch as general knowledge was

sufficient (for the bounds above) there is no need to do more about it

unless one has new, ambitious tasks in mind!

(b) It seems plausible that, as far as applications to computer

science are concerned, the general ideas of consistency proofs but not

necessarilL the specific schemata of functions (leading to the programs

r in §1b) are useful. Quite generally, the currently open problems

23

27

www.manaraa.com

really concern the details of the specific schemata, since the theoretical

possibility of constructivizing the bulk of mathematical practice has beep

established. Neglect of this fact has led people to rehash, at length,

dead issues.
20

(c) The general conflict between logical and computational purposes

(which we are talking about) can also be put as follows. Consistency

proofs qua logical contribution tell us the nature of the problems in-

volved in constructivization, in other words, what is, generally, pos-

sible. It is not reasonable to suppose that the same piece of work

will often be useful for actual understanding of particular problems.

Specifically, to take one of the non-constructive proofs considered

in the papers cited in footnote 16, knowledge of consistency proofs

allowed one to see (the theoretically interesting fact) that without

new ideas one obained a bound

228
(an < 2-)[7(n) > li(n)]

from Littlewood's non-constructive proof of

an[7(n) > li(n)]

where Tr(n) denotes the number of primes < n and li the logarithmic

integral. But we now know (the practically more interesting fact) that

by judicious use of new ideas and a fast computer one has

(En < (1.65)
.101165)[n(n)

- li(n)] .21

In the last analysis the reader will simply have to decide for himself,

if or to what extent the theoretical knowledge helps him in his practice.

3. Speculation on systematic uses of fast computers. As already

stressed at the beginning of §2, there is no doubt about the possibility

of intelligent ad hoc use of computers in extracting bounds from non-

constructive proofs; for example, in the paper cited in footnote 21.

But it is more difficult to formulate good general principles for such

uses; or, put differently, it is difficult to apply to the present topic

of translations (from non-constructive proofs to programs) the well-known

general criteria on fruitful uses of computers.

www.manaraa.com

(a) Principle of the middle-distance. I suppose the most familiar

criterion is this (which, as pointed out at the end of Note 1, is not

satisfied by so-called automatic theorem proving). We have a-V.aildble 3

conditions: (i) a formal analysis of a problem, in our case of extracting

bounds from formal derivations in non-constructive systems; (ii) the

analysis is not so simple that we can apply it 'efficiently' ourselves;

(iii) the analysis is not so complicated that it cannot be used by (-,xisting)

computers either.

To make progress we must look at the details of consistency proofs

and the preparation needed in their application. The first point that

helps is that we do not need a 'fully formalized argument. One soon

learns to separate irrelevant inferences and concentrates on critical

ones.
22 The bounds obtained by use of a cohsistency proof depend (only)

on the syntactic properties of the formulae appearing in these critical

inferences. What can the computer do that we can't or won't do?

Speaking from my (limited) personal experience a human computer soon

gets bored trying to determine the syntactic complexity of the relevant

formulae, and then makes quite rough estimates. The loss of computational

efficiency is hidden because we use non-numerical terms in presenting the

solution (cf. I §1a). Thus in Pc we have

8

2
2

and (1.65) 10
1165

;

size, not (human) intelligibility, makes a marked distinction between

these two terms.

Suggestion. Perhaps there are occasions where a computer can produce

a significantly lower bound without any new ideas, but as follows. We

take the explicit definitions in an informal proof, we take the critical

inferences (expressed of course by use of those explicit definitions)

and simply let the computer work out the syntactic complexity of the

formulae obtained after eliminating the explicit definitions.
23

(b) Developing the suggestion above, one could look for a very

special kind of 'automatic' theorem proving, namely reductions of the

syntactic complexity of the critical formulae (of course, reductions

by means of non-critical inferences).

25

29

www.manaraa.com

This particular proposal is related to the general aim of using com-

puters to fill in 'gaps' in elementary informal proofs. But even if, per-

haps for the reasons given at the beginning of I §3c, this general aim

has no feasible mechanical solution, the narrower problem of reducing

syntactic complexity may do: it certainly has a more mechanical look.

Also this problem does not involve any (artificial) reduction of the

language used (which is the 'logical device that, in these notes, is

held responsible for inefficiency).

Warning. All I can hope to have done here is to have made a case

for studying problems which, for the widely accepted doctrinaire views

described in footnote 18, are underestimated. There can, I think, be

no true progress until we have found a specific problem, where we really

want to know the bounds and therefore can judge whether some given solu-

tion is satisfactory. Afterwards we can build on the solution.

IV. Experiments with Computers on the Complexity
of Non-numerical Computations

In Note I §3c, in connection with search procedures for proofs, that

is, 'automatic theorem proving', the role of extending the language of

predicate calculus (in human proofs of logical 4 theorems) was discussed.

The formulation of this role in precise mathematical terms is quite ob-

vious. Moreover, given a particular set of deduction rules the problem

of determining bounds for the efficiency of search procedures (average

length of searches) is of course mathematically well defined. But all

this is irrelevant, on the practical philosophy guiding these notes,

since the general problem is too complicated combinatorially and therefore

not likely to be (practically) rewarding.

Rather, we should like to make use of the experience we all have

of mathematical proofs to pick out Earticular cases Which have a chance

of being typical. This is all the more important in the present context

since there is a genuine possibility of using computers to help study

26

www.manaraa.com

such a particular case, but none of using them directly for the general

mathematical problem above. The reader should note that this proposal,

of using computers on such typical particular cases, is itself a good

example of the ad hoc uses of computers described at the beginning of

III §3 (so-called 'man-machine interaction'): searching through search

procedures would be hopeless even for computers; however, for some par-

ticular examples and search procedures, analyzing the length of the search

seems hopeless for a human computer (even if he is allowed to use all his

mathematical ingenuity
25

); but by the very nature of the problem, a com-

pute-r can, always, be used to decide whether the particular procedure is

practical for this computer to solve a particular problem: just set the

computer going and let it run for the time you have available!

The basic question is of course: how good is our judgment of which

cases are typical? Since a fair amount of computer time (where time is

money, and not merely ennui) is needed for the kind of experiments I have

in mind, let me begin by expanding the argument in I §3c for giving up the

'logical' point of view. But the discussion is not needed for §§2-3.

1. Some consequences of the chase after logical completeness.
26

The kind of completeness meant concerns not only completeness (of proof

procedures) w.r.t, validity, but also so-called functional completeness

(of the language used).

(a) In connection with predicate calculus, if logical selection

criteria are to be used at all, the classification according to prefix

complexity is no doubt as natural as any. For this classification essen-

tially only (negati-re) undecidability results are available.

More importantly, for the most outstanding decision methods so far

discovered (for various classes of fields), the subclass of formulae

considered, namely,

(*) A -4 B

for fixed A and arbitrary B, is quite unnatural from a purely syntactic

or logical view: the choice of the particular A is not explained in

syntactic'terms.

Conversely, at least at present, if we take such a known decision

method and ask for a more general class of formulae (with A eq;)

27

31

www.manaraa.com

to which the method applies, no syntactically natural definition of ®.

suggests itself. In the words of Wang's paper, cited in footnote 26,

p. 102: we have here a powerful (decision) method applied to the re-

stricted 'range' of formulae (*). But we don't really know what to do

with the method within the general framework of logical complexity (how

to 'explore' it, loc cit., p. 102, 1. 11). Incidentally, the same situ-

ation arises with more advanced mathematical results when they are for-

mulated in some reductive vocabulary like that of axiomatic set theory.

We have here a typical example of the frustration produced when

one wants to apply the much vaunted dialectical method: it!e all very

well to say we should build onprevious knowledge (= synthesizing thesis

and antithesis); but which general framework (for a synthesis) is valid?

(b) In connection with (partial) recursive functions we have a sim-

ilar situation to the reduction classes in (a). As shown by various

'axiomatic' recursion theories
27

or combinators: provided we have a

few 'simple' basic functions and some kind of composition, all partial

recursive functions can be defined and hence, once again, we have a

host of (recursive) undecidability results.

If Ive stay closer to computations, not the partial recursive func-

tions, but rudimentary functions used to code the sequences of states

of a Turing machine (or, equivalently, used to enumerate r.e. sets) are

fundamental; the partial recursive functions are defined from them as

described. (This example was already used in the Technical remark at

the end of I §2a)0 While of course equations between closed rudimentary

terms are, those between open ones'are not, in general, decidable; cf.

the Remark in II §2.

(c) Granted (a) and (b), a study of logically 'complete' languages

(for the whole of predicate logic, resp. for all partial recursive func-

tions) would still make practical sense if there were at least a fair

number of significant cases where results about the whole, undecidable,

class specialize to practical computation procedures in some practical

subclass; in other words, if the 'logically complete' theory were a good

practical theory.

I know from experience in proof theory that, at least there, one

has to make a fresh start; as was mentioned earlier, proof theory begins

28

32

www.manaraa.com

where recursion theory ends; cf. specific examples in §2b below. As to

computation, for example, Rabin's useful decision method for trees
28

does not seem to be a special case of a general result (perhaps on de-

finability--of course not on decidability) for, say, the whole second

order predicate calculus.

Discussion. By footnote 25, the general issue is far too inter-

esting simply to adopt some point of view (for example, of the present

notes) as a working hypothesis. One wants to test it. The difficulty

in testing is of course this: whatever view one adopts one is going to

get some 'results'; and if the view is coherent one will get mathematically

satisfactory resultk:, even if the view itself is mistaken.

I suspect that the present issue is closely connected with the so-

called 'prejudice' of mathematicians against logic. Since most of those

mathematicians do not know technical logic their opinion is not based on

the actual technical level or mathematical quality of the methods used in

logic. What they do know is the ordinary meaning of 'logic' as the science

of reasoning or of the principles of reasoning; in other words, that the

subject of logic (applied to mathematics) is concerned with possibilities

of proof. And, in their inarticulate way, mathematicians want to say

that the kind of general knowledge of such possibilities provided by

logic, does not help them with actual understanding of a given proof;

cf. also III Pc.

The only part of the methanistic view mentioned in footnote 26 that

I am using in these notes, is this:

Human intelliglbility is a qualitative indication of mechanical

feasibility.

As a kind of corollary:

A proof which surprises us will be difficult to find by a

general mechanical method.

We shall consider two measures of difficulty in §§2,3.

2. First experiment:. The intention is to find a problem, which is

formulated in first order language and is of undisputed mathematical

interest (and hence of feasible lengLh!), but has no proof of feasible

length in the language of predicate calculus.

29

www.manaraa.com

In other words, though some proof in predicate calculus exists, such

a proof is not only difficult to find, but difficult to write down (even

if faund). Consider the proposition

There are no skew fields or division algebras over the reals

of dimension n except for n = 1, 2, 4, 8 (real and complex

numbers, quaternions and Cayley numbers resp.).
29

For any fixed n, there is of course a formula in the first order language

of real closed fields which expresses the existence of such an algebra of

dimension n by means of an HI' formula, say EgV5WD
n

namely, the

existence of elements (real numbers) ak (1 < ilj k < n) such that the
ij

compositinn law or 'multiplication table'

(x
1,

xn) (y
1,

.,y
n

) = (L,L.-04QV X .y .9

1,3 1 j iJ 1

satisfies the axioms for a division algebra (of course for all real

numbers x and y).

A statement of this form is decided by the (first order) axioms

for real closed fields. Therefore for each n 1, 2, 4, 8 there

exists some derivation of 1 SCITIV3D
n

from those axioms.

CONJECTURE. There is an n, say n = 64 or n = 256, for which

the formula 1 HVYVVVD
n can be stored in the memory of a moderately

priced computer, but the shortest first order deduction cannot be carried

out in a week on the fastest available computer.

The assumption about feasibility here is that at most one week's computer

time on the fastest computer is available to the experimenter.

Evidently, in principle, the problem is purely mathematical once

the intended deduction rules for predicate calculus (or, more precisely,

not for logical validity but for consequence from axioms for real closed

fields) are given. I assume that this mathematical problem is too diffi-

cult. The experimenter should reflect, perhaps guided by the topological

proofs cited in footnote 29, on the most promising strategies and then

let a computer work them out. Here are some comments for orientation.

(a) The general reason for Choosing this problem is stated quite

convincingly by Wang (cf. footnote 261 p. 107, second paragraph). The

topological proofs were found to be surprising. Moreover, the theorem

www.manaraa.com

in question had been conjectured a long time ago; so it was the proof,

not the resu2t which was surprising. Hence it seems not unreasonable-to

suppose that some intrinsic properties of possible proofs--and not only

of the search for proofs--constituted an obstacle to its discovery; cf .

also the Remark at the end of this Note. (The particular conjecture is

problematic, just because the general reason is quite commonplace.)

The present issue should be distinguished from a superficially

similar problem which is definitely interesting for computer science

but of a different character, namely, the computational analysis of the

various decision methods for the theory of real closed fields. To dis-

cuss this matter we need a distinction.

(b) In its ordinary sense a decision method is given by a function

5 from (closed) formulae A (of the theory) to {TA), where

5(A) = T if A holds, 5(A) = I if A does not hold;

or, equivalently, in the case of a complete theory, where

5(A) = T if A is derivable, 5(A) = 1 if -1A is derivable.

Actually, constructive proofs of decision methods, for example, by quan-

tifier elimination, yield more, namely, a function 5
F

fram formulae to

formal deductions in a system F such that (for example,in the case of

complete theories)

F
5 (A) is a formal derivation in F of A if A is derivable,

F,
5 Uk) is a formal derivation in F of -1A if -1A is derivable.

Clearly the CONJECTURE would be refuted if we had a practical 5
F

for

the theory of real closed fields (where F is the formal first order

theory). Equally clearly, the topological proof provides a splendid 5

for the class of formulae awn,--J-ID
n

for n = 1, 2, ! (This is

the !sophisticated example' promised at the end of II §1.)

From non-constructive proofs establishing the decidability by means
a

of a function 5 we can of course also derive an explicit 5 ..wher9,

however, 3 contains also the principles used in the metamathematical

proof of decidability.

31

35

www.manaraa.com

O(A) consists in evaluating 5(A) and then attaching the

metamathematical proof of the properties of 5.

The reader will recognize the parallel between the relation of 5
F

to

5a on -Lhe one hand and the relation of numerical to non-numerical but

numerical-valued terms (in I §2a or III §3a) on the other. The main
F

difference is that the values of 5 (A), 5
5
(A) are proofs and not

numbers.

An even more brutal use of non-constructive proofs of decidability

(which need not even provide an explicit 5) is this: one defines the

recursive function 5
D

('D' for mere decidability)

D
(A) is the first derivation d (in some co-order of the

formal derivations of the given system) which ends up with

either A or with -IA.

5
D

is recursive by (the mere fact of) decidability and recursive enu-

merability of the theorems of anY formal system. There is no apparent

way of refining the brutal definition
D

to get a practical 8, let

alone: The reader will have recognized here a particular instance

of the limitations of recursion theory discussed in §1c above. (He would

be amazed to know how often the simple facts above are ignored in the

literature, with hilarious results.)

(c) It goes without saying that (as is familiar from all sciences

which involve both theory and experimentation) it Cannot be expected:that

all details of the experiment proposed are perfect! A skillful
30

computer

scientist may think of a more promising example to work on than the theorem

about division algebras. But it is possible to analyze in advance at least

in a general way what we can expect to learn from this kind of experiment.

If the conjecture is refuted (for some n which 'barely' misses

being a solution), one would simply have an unexpected success of automatic

theorem proving in its current sense. Also, I should expect from this a

contribution to algebra: a mathematician reflecting on this hypothetical

piece of first order algebra may discover in it some general features of

mathematical interest.

www.manaraa.com

If the conjecture is established, we have only evidence against the

(whole) current trend in non-numerical computation, not against the pos-

sibility of using computers.

We have to look for relatively few additional notions about the

real numbers (enrich the field structure a 'little') in nraer

to shorten relatively many proofs considerably. And WE ?Ct

to find a not negligible area of problems which are of inberest2

and have computer-solutions by use of these additional notions

(problems which do not have computer-solutions without them nor

humanly performable solutions with them).

To remove a quite unjustified air of unreality from this task., it should

be observed that it is analogous to the task which the 'abstract' mathe-

matician sets himself (except of course that the reference to 'computer-

solutions' is to be dropped); 'humanly performable' means: comprehensible.

The mathematician's task is not finished even when there is a practical

decision method for all formmlae of a language! He still wants to find

infinite or even large finite classes of formulae for which he can tell

us the result of applying the method, in short, he really wants to solve

problems.

Inasmuch as the organization of a computer is different from our way

of thinking, the computer scientist cannot expect to use exactly the same

solutions as the mathematician. But one would expect the mathematician's

'unsystematic work to provide a better general guide than the systematic

parts of logic. On this score proof theory seems to stand a better chance

of being useful than say model theory or recursion theory just because of--

what to many logicians is--its principal 'defect': it studies specific

systems, specific processes derived from an examination of our'intended

meanings, and has to search for principles of choice (which even after

they are found may be less convincing than the choices themselves).

3. Second experiment: Here the intention is to find a theorem

(bien entendu, again of undisputed interest) which we know to have relatively

short proofs in a given system; but no reasonable universal search procedure

could be expected to find such proofs in a feasible number of steps.

www.manaraa.com

(i)

Consider the arithmetic propositions:

n = 0 V --, n
2
= 2m

2

i.e., the irrationality of the square root of 2, and

(ii) n om = 0 V 1 nq + mq = pq for q = 3, 4, ...,

i.e., instances of Fermat's conjecture.

Both (i) and (ii) are written in the language of the ring of integere

(that is, + and X only). Certainly (i) has a relatively short proof

in the first order theory of the ring of integers, including induction.

And (ii) has such a proof, for instance, for q = 3 or q = 4.

The known proofs of (i) and of (ii) with q = 3, were certainly

felt to be surprising. One striking feature in both cases is that, as

ordinarily formulated, the procfs use concepts which do not occur in

the statements of the theorems. More formally, they use concepts which

cannot be defined in the language of rings without the use of logical

symbols, for example, in (i) one uses divisibility or prime factorization,

in (ii) for q = 3 one uses Legendre's symbol. These proofs can be trans-

lated into the first order language of rings by using, throughout, explicit

definitions of the new concepts (and relatively simple proofs of their

'defining equations' when the new symbols are replaced by the definitions).

It is a mathematical fact
31

that the theorems mentioned cannot be

proved in the theory of rings with induction, but without the use of

logically complicated formulae. Put differently, the selection of those

auxiliary concepts and of their definitions in the first order language

of rings is the central problem.

My impression (or, as people nowadays like to say, !intuition')

is that tne selection depends, practically speaking, on understanding

the intended arithmetic meaning of (i) and (ii). A possible computational

effect could be that universal procedures (for predicate logic or perhaps

even ring theory) would not find proofs quickly.

Evidently the first step would be to take an existing procedure;

or rather choose among existing universal procedures the one that strikes

the computer scientist as best suited to this problem. Perhaps someday

www.manaraa.com

one could even solve the mathematical problem for all universal procedures

(satisfying same uniformity conditions which exclude building the known

proofs of (i) or (ii) into the first few steps of the procedure); for some

q in (ii) the search is inordinately long.

The general points made in §2 apply also here mutatis mutandis.

Remark. In line with footncte 25 (and Wang's paper cited in footnote

26) it would seem to me quite interesting to analyze striking specific

facts in the history of mathematics in terms of complexity of non-numerical

computation. For example--as a foil to the conjecture in §2--it was proved

a,long time ago that the only associative division algebras over the reals

have dimensions 1; 2; or 4:

QUESTION: Is there a relatively short first order proof of the fact

that there is no such algebra of dimension 64 or 256?

V. Remarks on Relevant Proof-theoretical Literature

Granted the basic phi_osophy going through these notes; namely, the

stress on the difference between logical and computational significance,

the following corollary is plausible.

The logical highlights of proof theory, which are of course the

best-known parts of proof theory, are not likely to be of direct interest

to the computer scientist. And, in particular, negative results are

something in the background; telling him what not to do or to expect.

.eor the same reason the computer scientist, especially if he is

interested in non-numerical computing, may find useful information in the

neglected proof theoretical literature!--'rieglected because; from a

logical point of view, it was marginal. The kind of thing I have in mind

is some new particularly elegant formalization or a particularly direct

treatment of some problems which; as far as logical interest was concerned,

had really been solved completely. There is of course no guarantee that

elegance or directness (for the human reader) will always have computational

www.manaraa.com

value but the possibility is worth keeping in mind.
32

NB: The neglect

of this kind of work I have in mind is not accidental: without r,ne addi-

tional computational analysis, the work is useless.

1. Propositional operators: -1, A, V) --)) 44. Logically, most

of these are unemployed, at least for the usual truth functional inter-

pretation since all of them can be defined by superposition from, say

(-1, A). Similarly, the propositional constants T and i can be de-

fined since, for variable p, p A -ip - lL. For logical metamathematical

arguments it is convenient to use only A) in order not to have too

many cases to consider. But, for example, as long as the operators oc-

curring in a formula determine the rules to be applied in some non-numerical

computation it seems plausible that a compromise is most efficient, where

one uses not only and A, nor, of course, a separate symbol for every

truth function!33 The following remarks may provide some perspective.

(a) Logically sophisticated readers seeing novel, more elegant for-

malizations tried to use them to get new logically significant results,

for example, by applying the new work to intuitionistic systems which

(are known to have logical interest but) do not allow explicit definition

of the other propositional operations from (-1, A). This applies also

to §2 below.

(b) The step (a) simplified the analysis by the-mathematically-very

popular device of using a purely .qualitative (indefinability) criterion

so that there is no need for closer quantitative analysis. In contrast,

the proposed computational use of novel formalizations needs at least some

assumptions about a correct measure of computational complexity. To judge

significantly between two given formalizations it will not be necessary to

find a particular measure, but only a few evident properties of a correct

measure.

(c) Logicians will of course try to exploit the last observation in

(b) above; see also the remark at the end of this note. But it is certainly

possible that good knowledge of computer 'hardware' may help one find an

explicit measure of complexity, and thus replace the judgment needed to

see what is significant or evident about such measures.

www.manaraa.com

(d) Practically speaking, the reduction of our problem to the kind

of judgment just mentioned constitutes progress: probably more people

(experienced in computer science) have such judgment than the taste

needed to recognize elegance in the proof theoretic literature. (It

is quite unnecessary to claim that matters of taste are not objective;

it is enough if people lack taste; just as it is of little help to blind

people that differences in color are objective: what they need is an

extensionally equivalent criterion which they can use, such as those

famous pointer-coincidences. Only the person who establishes the

equivalence must be able to see, and the same applies mutatis mutandis

to our problems about significance of computational measures.)

2. Prenex normal forms. Here again there is no doubt that for

(classical) logic, for example, in completeness proofs or in the state-

ment of such interpretations as provided by Herbrand's theorem (cf. the

end of III §1) it is rewarding to exploit the existence of prenex normal

forms. But we have already seen the computational absurdity of the

classification by prefix complexity in IV §la.

More importantly, if one is interested in the formal deductions

themselves (not only easily comprehensible interpretations of the kind

needed for Note III), it is morally certain that it is better to use

formulations in systems of natural deduction-34 and normalization pro-

cedures:these are not significantly simpler for prenex formulae; 'In

contrast to Herbrand's treatment they also analyze quantifier free but

propositionally complex formulae. The moral certainty will become mathe-

matical if a correct measure of complexity of deductions and bounds for

the complexity (of the particular deductions involved) are available.

3. Equality. It is one of the more memorable facts of elementary

logic that the theory of predicate logic when = has the intended meening

is reducible to ordinary predicate logic (in contrast, e.g., to the

where we have a binary relation symbol < with intended meaning: a < b

if and only if a and b are natural numbers and a is less than b).

One simply takes all relation symbols R. and function symbols f.

occurring in the formula F to be treated and considers the implication

37

www.manaraa.com

(*) V3! Vc ' (bNx. = x!) hN[(R. 4-) R!) A (f. = f!)]) F
J J

-4
where x is a sequence of variables containing the arguments of all the

R.and f. and R, F are obtained by substituting xf for x. in
J J

Rj resp. fj. (No two syMbols R or f, have any argument in common.)

But as any writer on proof procedures knows, 35 derivations of the

implication (*) have a quite different structure in detail from, say,

natural deductions of F using relevant equality rules. (I cannot re-

call exact references, but I seem to remember material in Japanese

journals and in a letter from K. Schate.)

4. Axioms and rules. The particular case of equality in §3 is

distinguished by the fact that, for a given F, a single (equality)

hypothesis is added, which, moreover, is determined by F itself. In

the case of the induction schema,

* *) VX[(A(01x) A Vn[A(nlx) A(n + 11x)]) VnA(n,x)]

we have also a reduction to predicate logic; it needs a single premise

if we use the schema only for formulae A of bounded complexity; in-

stead of the equality axiom in (*) of §3 we use (**) as anhypothesis

on F.

But, as any up-tc-date account of the matter shows, we cannot

deduce significant results for arithmetic fram sucn results es Herbrand's

theorem; at best we can hope to generalize .11e ideas involved in the proof

of the heorem, and apply them to the rule:
.36

Derive VnA(n) from A(0) and Vn[A(n) A(n + 1)]'.

5. Computation diagrams for various classes of functions. In view

of the connections between computations and deductions discussed at length

in Notes 1 and 2, it is clear that the proof theoretic literature must

also contain several computation diagrams or schemata which define the

same class of functions but have quite different computational properties.37

However, I am not competent to give a detailed bibliography.

CONJECTURE. Probably a good deal of information which is useful to

the camputer scientist is contained in the details of work by people who

are best known for the logically important results they have Obtained

38

42

www.manaraa.com

while the elegance of their mathematical ideas may or may not be recog-

nized; as examples of the former we have the family J. and R. M. Robinson

or Schate; as examples of the latter, Kleene ana some Japanese authors.

It must be remembered that mathematical elegance (which is relevant

to computational applications) need not be apparent from the look of the

printed page, let alone from the grammar of the introduction or the general

literary form--and therefore it is not easy for us to judge at a glance.

This is ol_y one further addition to the many examples in these notes of

the differences in detail between human and mechanical requirements.

Remark. As far as I can see, a rather simpleminded idea of choosing

between formalizations, which I have pursued for some years, has not yet

been refuted:

To consider infinitary languages, where of course differences

are very much magnified (t1-_e ratio of ccao is 'bigger than

the ratio 2
2

: 2!), and to hope that obvious ordinal measures

in the infinitary case will be a reliable guide to the subtle

measures needed in the ordinary finite case.

Cf the paper cited in footnote 36, top of p. 330 (and, for yet another

direction, App. VIII on pp. 383-384).

39

43

www.manaraa.com

Footnotes

1
This research was supported by National Science Foundation Grant

NSFGJ-443X2.

2
Some of the material in these notes appeared in: Hilbert's programme

and the search for automatic proof procedures, Springer Lecture Notes 125

(1970) [pp. 128-146, reviewed Zbl. 206 (1971) 277-278], which are the pro-

ceedings of a conference held in Versailles in December 1968 (on automatic

demonstration). The present version is not only better organized and more

articulate but, especially in Note 2, makes essential use of recent mate-

rial published in: Second Scand. Logic Symp., ed. J. E. Fenstad, Amsterdam,

1971.

3Mathematicians have studied only relatively recently so-called

non-extensional properties (of rules) which distinguish between two

rules even if both assign the same value to each particular argument.

For an example from arithmetic, consider the following two rules which

determine quite different computation procedures. Letting 1-4 mean:

is replaced by, the first rule says: n 0. The second rule says:

n n 2 n with two 'subroutines' determined by the familiar rules for

the predecessor (pred) and subtraction (2, as ab)ve), that is, pred 0 1-) 0

and pred (m + 1) m; m 0 1--) m, and m (p + 1) pred (m p).

4
The business about computation being an art supposes of course that

there are no aesthetic laws. Actually, I believe, quite often we have to

do with an illiterate expression of a sensible objection, namely, when

quite unimaginative classes of rules are preferred for no other reason

than that they are precisely defined (say, primitive recursive computation

rules). A vague idea which is fairly close to good sense is often much

more useful, "aough--by the very meaning of the terms--wc should not be

able to give (explicit) reasons for this fact.

5.At the risk of sounding arrogant T should like to add that, just

beccLuse of this difficulty, not only particularly gifted, but also quite

weak minds are attracted to these problems, the latter because it is more

difficult to establish the inadequacy of their proposed solutions. What-

ever my motives in saying this, I believe the remark is practically important

44

www.manaraa.com

for computer science. Otherwise one is tempted to assum ,:! that, for example,

the whole subject of automatic theorem proving is hopeless just because the

quite massive existing literature contains so little significant work.

601d-fashioned experimental genetics and pseudo creative recursion

theory have a similar jargon but like to use long words.

7This metamathematical meaning is not what we are taught in university

mathematics when the integers and (cardinal) addition are defined set

theoretically. There we prove, using our knowledge of set theoretic

notions, that the assertion VxVy(x + 0 = x & x+:sy = s(x + y)) is true

for the set theoretic meaning. In a careful course it is then explained

why, for numerical terms n and m, n = m is true for the set theoretic

meaning if and only if n and m have the same formal value (complete-

ness of the rules of addition; see para. 2 below).

8It is certainly true that in soni b. highly developed subjects (electric

networks) theory actually predicts experimental results; irrsuch cases a

developed formal theory is always useful. But theoretical or 'idealized'

notions can also be useful in more subtle areas by drawing attention to

general features or, as one says, by providing a 'point of view'. This

can be achieved either by means of a mathematical formulation or by an

instructive example.

9For further support, see J. T. Kearns, JSL 34 (1969) 561-575 and

(the supplementary) Part II of the dissertation by H. P. Barendregt,

Utrecht, 1971. There it is shown how Turing machine programs Tr (and

other computation diagrams) map into combinatory terms t in the sense

that the sequence of states determined by r corresponds to the sequence

of terms appearing in the reduction of the term t
r

.

10In the present context it would be pointless to 'identify' a formai

system with its set of theorems, that is, to forget everything about it

except the set of theorems: one wouldn't be making any deductions at all!

One may still 'identify', say, the rules for forming wff with the set of

wff as long as; quite realistically, it is easy to decide whether or not

an expression is .a wff.

45

www.manaraa.com

11
In §la of: A survey of proof theory II, Second Scand. Logic

Symposium, ed. J. E. Fenstad, Amsterdam (1971) 109-170, I discuss some

Kleinarbeit which is required here. In the same volume there is also

an excellent account which 'accentuates the positive', by Prawitz, partic-

ularly pp. 282-283 on a connection between derivations and terms.

12
As always, maximizing an efficiency ratio does not consist in

taking some given class of cases (say all formulae of predicate logic

or all diophantine equations) and looking for a most effective procedure

of handling them all: even if such a procedure exists it may be hope-

lessly ineffective. The problem is to discover a subclass which is (i)

still useful, but which (ii) admits a much more effective procedure. For

this reason 'logically' complete languages are rarely useful when efficiency

is the principal issue.

13
See H. S. Vandiver, Fermat's last theorem, Amer. Nath. Monthly 60

(1953) 164-167 and the literature referred to there.

14
The reader should, of course, make use of the knowledge he happens

to have (for an illustration, it doesn't make sense to learn a new ex-

position even if it is much more elegant, provided a familiar one conveys

the same idea). A fairly adequate introduction is on pp. 225-227 of

Shoenfield's standard text Mathematical Logic, Addison-Wesley, 1967.

For more detail sea L. E. Sanchis, Notre Dame J. Formal Logic 8 (1967)

161-174, another is W. A. Howard, pp. 443-458 in: Intuitionism and proof

theory, Amsterdam, 1970. A word of warning: the fact that the laeta-

mathematical methods used by Sanchis in the analysis of computability are

less elementary than Howard's is totally irrelevant for computational

applications: just as--at the end of §1 above--any proof of Fermat's

conjecture, however non-constructive, makes the difference between the

first, useless, (primitive) recursive programmation and the second which

appeals to (hypothetical) numerical analysis. To return to the two papers

above: it is more significant computationally that Sanchis establishes

strong computability for a greater variety of reduction rules than are

considered by Howard. (Computation is closer to genuine mathematics than

to foundations.) See also the papers cited in footnote 11 of Note 1.

46

www.manaraa.com

15This is studied in Kreisel-Tait, Z. math. Logik U. Grundlagen 7

(1961) 28-38.

16
For example, in my paper: JSL 23 (1958) 155-182 and its predecessors

in JSL 16 (1951) 241-267 and 17 (1952) 43-58.

17At the present time actual mathematical (in contrast to metamathe-

matical) number theory does not know examples of such A; more precisely

there are no known examples of guch 'VxA which strike the experienced

number theorists as mathematically interesting. By §3b, it may well

be of great practical Use to know the status of this fact: in a prac-

tical theory we want to take into account the statistical distribution

of the material to which the theory will be applied; cf. Section 2

below.

18This quite essential problem is usually overlooked in the doc-

trinaire constructivist literature for the following obvious reason (of

which the doctrinaires are certainly not always c:onscious). Since the

very idea of arithmetic truth or non-constructive proof of amA(nm)

is rejected, the transformation .-Jf p into the program u provides,

generally, the first constructive proof of amA(n,m) and therefore--

according to the doctrine!--the first valid proof. From the doctrinaire

point of view this step is 'fundamental' and the 'detailed study' required

above is, at best, regarded as a refinement.

19K. F. Roth, Mathematika 2 (1955) 1-20;., and H. Davenport and K. F. Roth,

Mathematika 2 (1955) 160-167.

COCf., e.g., the rephrasing by E. Bishop;, Mathematics as a numerical

1,-...nguagel pp< 53-71 in: Intuitionism and proof theory, Amsterdam 1970.

In particular it ignores the fact how much mathematirla practice can be

developed in subsystems of familiar systems (of analysis or set theory).

21R. S. Lehman, Acta arithmetica 11 (1966) 397-410.

22
Indeed, in one of th?. well-known methods in the literature, Hilbert's

e-substitution method, one speaks of 'critical formulael; see Hilbert-

BerrFus, vol. 2 (1970), p. 21.

43

47

www.manaraa.com

23
There is also an interesting and (therefore?) neglected theoretical

problem of seeing whether the order of magnitude of the existing bounds,

as a function of the syntactic paramet .s used, is right. For interesting

exceptions, see B. Dreben, P. Andrews, S. Aandera, Bull. A. M. S. 69 (1963)

699-706 and current work by the Leningrad school of proof theorists.

24in the many cases where the formalization of ordinary reasoning

involves a reduction to the language of predicate logic; as stressed in

III §3b, for instance, in the case of quantifier manipulation to minimize

logical complexity, no such reduction in involved. N.B.: To avoid (a

most unlikely) misunderstanding. It is not the purpose of this note

(nor of I §3c) to argue against the possibility of using properly com-

puters for 'theorem-proving or non-numerical computation; I am skeptical

of (the current fashion of) using programs in the language of predicate

logic; cf. also §2c below.

25It is sometimes forgotten that; for a wide class of problems such

as multiplication of large nuMbers, computers are superior to a mathe-

matician even if the latter is allowed to use all his ingenuity. The

(practical) philosophy in these notes can nowbe restated as follows:

find new areas where this kind of superiority is relevant--rather than

finding complicated mechanical procedures to replace simple uses of

ingenuity. The theoretical Objections to the 'opposite' philosophy were

discussed at the beginning of I §3c. Incidentally, in the literal sense

of the words a 'theory of knowledge' might e expected to give us an idea

which (areas of) problems are more easily understood by use of available

mechanical devices and which by available ingenuity. Traditional epistemology

simply did not possess these alternatives and therefore had to confine itself

to questions of validity (of knowledge), though some philosophers--from Kant

to Wittgenstein--tried to widen the subject (before i was ripe, I think).

26
A general discussion of additional (negative) consequences is given,

e.g,, on p. 105, in H. Wang's paper: On the long range prospects of auto-

matic theorem proving, Springer Lecture Notes 125 (1970) 101-111. The con-

clusions drawn overlap' (of c-xurse) occasionally with those below, but the

general view is not only different from, ut in contradiction to, the

4-4

48

www.manaraa.com

philosophy of these notes; cf. the crucial passage, p. 106, 1. 3 to 1. 9.

Specifically if (a major part of) mathematical reasoning were indeed

mechanical in nature, also the selection of (the major part of the) useful

extensions of the language discussed in I §3c and of restrictions to sub-

classes would have to be mechanized.

27
H. R. Strong, IBM Research and Development 12 (1968) 465-475

and E. G. Wagner, Trans. A. M. S. 144 (1969) 1-42. The composition

aob means in Kleene's notation (a)(b) or ((a)(b)), depending on the

context.

28
Which led him to discover certain decidable second order theories

which have some aesthetically very satisfactory campleteness properties,

cf. Trans. A. M. S. 141 (1969) 1-35.

Milnor, Ann. of Math. 68 (1958) 444-449 and J. F. Adams, Ann.

of Math. 75 (1962) 603-632 for the non-associative -case (permitting n = 8).

30
It also goes without saying that, in many cases, the experimenter's

problem, that is, the step from the (theoretically perfectly sound) theo-

retical solution, to a workable expe2iment may simply be much more diffi-

cult than the theory.

31
J. C. Shepherdson, Bull. Acad. Pol. Sc. 12 (1964) 79-86 and pp.

342-358 in: The theory of models, ed. Addison, Amsterdam, 1965.

32As stressed throughout these notes, general aesthetic criteria

are certainly not reliable since, as elaborated in the introduction,

for example, logicea completeness has very great aesthetic appeal; indeed

abstract questions which we make up ourselves are often more manageable

than the more significant probleils and have attraction just because we can

do something about them.

33Significant quantitative work in the propositional case is contained

in a paper by L. Hodes and E. P. Specker, pp. 175-188 in: Contributions

to mathematical logic, ed. H. A. Schmidt and K. Schate Amsterdam, 1968.

It does not deal with complexity of propositional deductions but of

(propositional) definitions of truth functions. See also footnote 23

of Note 3.

www.manaraa.com

1965.

34D. Prawitz, Natural deduction, A proof theoretical study, Stockholm

35cf., e.g., the paper cited in IV, footnote 26, where also the, in-

cidentally quite unrelated, problem of including = in decidability pro-

cedures is mentioned.

36 e.g., §6 of my paper JSL 33 (1968) 321-388, with information

on axioms and rules on pp., 366-368.

37Cf., for example, the elegant schemata by means of iteration for

the class of primitive recursive functions by R. M. Robinson, Bull. A. M. S.

53 (19)-i-7) 925-942, where recursion is replaced by iteration.

46

www.manaraa.com

(aritinued frbm inside front cover)

96 R. C. Atkinson, J. W. Brelsford, and R. M. Shlffrin. Multi-process models for memory with applications to a continuous presentation task.
April 13, 1966. (J math Psychol., 1967, 4, 277-300).

97 P. Suppes and E. Crothers. Some remarks on stimulus-response theories of language learning. June 12, 1966.
98 R. Bjork. All-or-none subprocesses in the learning of complex sequences. C. math. Psycho!. , 1968,1, 182-195).
.99 E. Gammon. The statistical determination of linguistic units. July 1, 1966.
100 P. Suppes, L. Hyman, and M. Jerman. Linear structural models for response and latency perfmmance In arithmetic. en J. P. Hill (ed.),

Minnesota Symposia on Child Psychology. Minneapolis; Minn.:1967. Pp. 160-200). .

I 01 J. L. Young. Effects of intervals between reinforcements and test trials in paired-associate learning. August 1,1966.
102 H. A. Wilson. An investigation of linguistic unit size in memory processes. August 3,1966.
103 J. T. Townsend-. Choice behavior in a cued-recognition task. August 8,1966.
104 W. H. Batchelder. A mathematical analysis of multi-level verbal learning. August 9, 1966.
105 H. A. Taylor. The observing response in a cued psychophysical task. August 10, 1966.
106 R. A. Work . Learning and short-term retention of paired associates in relation to specific sequences of interpresentation.intervals.

August 11,1966.
107 R. C. Atkinson and R. M..Shiffrin. Some Two-process models for memory.. September 30,1966.-
108 P. Suppes and C. thrke. Accelerated program in elementarY-sChool.mathematics--the third year. January 30, 1967.
109 P. Suppes and 1. Rosenthal-Hill.. Concept formation by kindergarten children in a card-sorting task.. February 27., 1967.

110 R. C. Atkinsnn and.R. M. Shiffrin. Human memory: a piropoied system and its control processes.. March 21, 1967.
Ill Theodor/. S. Rodgers. Lingidstic considerations in the design ofthe Stanford computer-based curriculum in initial reading. June 1, 1967.
112 «"ack M. Knutsort. Snelling drills using a computer-assisted instruCtIonal.systera: June 30,1967.
113 R. C. Atkinson. Insb.uction in initial reading under computer control: the Stanford Project. July.14,1967.
114 J. W. Brelf..ford, -Ir. *and R. C. Atkinson. Recall of paired-associates..as a function of'oyert.and covert rehearsal procedures. July 21,1967.
115 J. H. Stelzer. .inme ntsults concerning subjective probability structures wail simiorders. August 1,1967 .
116 1:). E. Rumelhart.. The effects of interpresentation Intervals on perforMance in a continuous paireckessociate task. August 11, 1967.
117 E. J. Fishman, L. Keller, and R. E..Atkinson. Massed vs distributed practice in computerized spelling drills. August 18, 1967.
118 G. J. Groen, An investigation of some counting algorithms for simple addition problems: August 2141967. .

119 H. A. Wilson and R. C, Atkinson. Computer-based instruction in initis0 reading: a progress report on the Stanford Project. August 25,1967.
120 F. S. Roberts and P. Suppes. Some problems in the geometry of visual perception. .August.31, 1967. (Synthese, 1967; 17, 173-20I)

121 D. Jamison. Bayesian decisions under total and partial ignorance. D. Jamison'and J. Kozielecki. Subjective probabilities under total
uncertointV. September 4, 1967.

122 R. C. Atkinson. Computerized instruction and the !sarning process. September 15, 1967.
123 W. K. Estes. Outline of a theory of punishment; October 1,.1967.
124 T. S. Rodgers. Measuring vocabulary difficulty: An analysis of item variables in learning Russian-English and Japanese-English vocabulary

parts. December.18, 1967.
125 W. K. Estes. Reinforcement in human learning. DecembAr 20,1967.

126 G. L. Wolford; D. L. Wessel, W. K. Estes. Further evidence concerning scanning and sampling assumptions of visual detection

models. January 31, 1968.
127 R.. C. Atkinson and R. M, Shiffrirr. Some speculations On storage and retrieVal processes in long-term memory. February 2, 1968.

t28 -John Holmgren. Visual detection with imperfect recognition. March 29,1968.
129 Lucille B. Mlodnosky. The Frostig and the Bender Gestalt as predictorsof reading achievemeii.: April 12,1968.
130 P. Suppes. Some theoretical models for mathematics learning,. April 15, 1968. (Journal of Research and Development in Edjcation,

1967, 1, 5-22)
131 G. M. Olson. Learning and retention in a continuous recognition task...May 15, 1968.
132 Ruth Norene Hartley. An investigation of list types and cues to facilitate initial reading vocabulary acquisition. May 29, 1968.
133 P. Suppes. Stimulus-response theory of finite automata. -June 19, 1968.

134 N. Moler and P. Suppes. Quantifier-free axioms fOr constructive plane ;.geometry. June..20, 1968. (In J. C. H. Gerrets7n'and
Oort (Eds.), Compositio Mathematica. Vol 20: 'Groningen, The. Netherlands: WOlters-Noordhoff, .1968. Pp. 14:s-152.)

135 W. K. Estes and D.. *P.' Horst. LatencY 'as a function of number or response alternatives in paired7associate learning. July !, 1968.
136 M Schlag-Rey and P. Suppes. Highrorder dimensions In concept ider.iffication. July 2; 1968,.. (Psychom. Sci., 1968, II, 141-142)

137 R. M. Sniffr1n. Search and retrieval processes In !Ong-term memory. August 15, 1968.
138 R. D. Freund, G. R. Loftus,. and R.C. Atkinson. Applications i multiprocess models fix memory to continuous recognition tasks.

December 18, 1968.. .

139 Ft; C. Atkinson. Information delay in !Inman learning'. December18, 1968,
140 R..C. Atkinson, J. E. Holmgren, and J. F. Juola.. Processing time as influenceclby the number of elements in tile visual display.

Marcb,14, 1964.
141 P. Suppes, E. F. Loftus, and'M. Jennan. Problem-solving,on a computer-based teletype; March 25,1969,
142 -P. Suppes and Mona'Morningstar. .Evaluation of three eompater-assi.ited instruction prograMs. ,May 2,1969.

143 P. Suppes. 'On the problems of using mothematiCs.in,the deVelopment of .!.e secial sciences. May 12,1969.

144 .Z. DOmotor. Probabilistic relational strirctures and their applications. May 14,1969.
145_ *R. 'C. Atkinson and 7: D. Wickens: .Hirman memory and the concept of reinforcement. May 20, 1969.

146 R J Tltiev Some .thodel-theoreticrestifts in.measerement theory. .May.22,1969:

147 P. SupPes.' Measurement: Problems of theory and application. lune 12, 1969.

148 P, Snppes 'and, C. Ifirke. Accelerated program in elementary"-sChool mathematics the fourth-year. August 7, .1969.'
149 D. Rundus and R.C. AtkinsOn. Rehearaal in free recall:"-A procedure fur direCt.observation." August 12, 1969.- ..
150 , P..Suppes.and S. Feldman. Young children's coMpr4ension o logieal October 15, 1969.

(Continued on back cover /

www.manaraa.com

(Continued from inside back cover)

151 Joaquim H. Laubsch. An :adaptive teaching system for optimal item allocation. November 14, 1969.
152 Roberta L. Klatzky and Richard C. Atkinson. Memory scans based on alternative test stimulus representations. November 25, 1969.
153 John E. Holmgren. Response latency as an indicant of Inform ion processing in visual search tasks. March 16, 1970.
154 Patrick Suppes. Probabilistic grammars for natural languages. May 15, 1970.
155 E. Gammon. A syntactical analysis of some first-grade readers. June 22, 1970.
156 Kenneth N. Wexler. An automaton analysis of the learning of a nimiature system of Japanese. July 24, 1970.
157 R. C. Atkinson and J.A. Paulson. An approach to the psychology of instruction. August 14, 1970.
158 R.C. Atkinson, J.D. Fletcher, H.C. Chetin, and C.M. Stauffer. Instruction in initial reading under computer control: the Stanford project.

August 13, 1970.
159 Dewey J. Rundus. An analysis of rehearsal processes in free recall. August 21, 1970.
160 R.L. Klatzky, J.F. Juola, and R.C. Atkinson. Test stimulus representation and experimental context effects in memory scanning.
161 William A. Rottmayer. A formal theory of perception. November 13, 1970.
162 Elizabeth Jane Fishman Loftus. An analysis of the structural ye lables that determine problem-solving difficulty on a computer-based teletype.

December 18, 1970.
163 Joseph A. Van Campen. Towards the automatic generation of programmed foreign-ianguage instructional materials. Ja. Jary 11, 1971.
164 Jamesine Pr lend and R.C. Atkinson. Computer-assisted instruction in programming: AID. January 25, 1971.
165 Lawrence James Hubert. A formal model for the perceptual processing of geometric configurations. February 19, 1971.
166 J. F. Juola, I.S. Fischler, C.T. Wood, and R.C. Atkinson. Recognition time for information st-ored in long-term memory.
167 R.L. Klatzky and R.C. Atkinson. SpecializaUon of the cerebral hemispheres in scanning for information in short-term memory.
168 J.D. Fletcher and R.C. Atkinson. An evaluation of the Stanford CAI program in initial reading (grades K through 3). March 12, 1971.
169 James F. Juola and R.C. Atkinson. Memory scanning for words versus categories.
170 Ira S. Fischler and James F. Juola. Effects of repeated tests on recognition time for information in long-term memory.
171 Patrick Suppes. Semantics of context-free fragments of natural languages. March 30, 1971.
172 Jamesine Friend. Instruct coders' manual. May 1, 1971:
173 R.C. Atkinson and R. M. Shiffrin. The control processes of short-term memory. April 19, 1971.
174 Patrick Suppes. Computer-aisisted instruction A Stanford. May 19, 1971.
175 D. Jamison, J.D. Fletcher, P. Suppes and'R.C.Mkinson, and performance of computer-assisted instruction for compensatory educatiop.
176 Joseph Offir. Some mathematical models of individual differences in learning and performance. June 28, 1971.
177 Richard C. Atkinson and James F. Jade. Factors influencing speed and accuracy of word recognition. August 12, 1971.
178 P. Suppes, A. Goldberg, G. Kanz, B. Searle and C. Stauffer. Teacher's handbook for CAI courses. September 1, 1971.

179 Adele Goldberg. A generalized instructional system for elementary mathematical logic. October 11, 1971.

180 Max Jerman. Instruction in problem solving and an analysis of structural variables that contribute to problem-solving difficulty. November 12, 1971.
181 Patrick Suppes. On the grammar and model-theoretic semantics of children's noun phrases. November 29, 1971.

132 Georg Kreisel. Five notes on the application of proof theory to computer science. December 10, 1971.

