ED 059 894

RUTHOR
TITLE

INSTITUTION
REPORT NC
PUB DATE
NOTE

EDRS PRICE
DESCRIPTORS

ABSTRACT

DOCUMENT RESUME

SE 013 378

Kreisel, Georg

Five Notes on the Application of Proof Theory to
Computer Science.

Stanford Univ., Calif. Inst. for Mathematical Studies
in Social Science.

TR-182

Dec 71

52p.

MF-$0.65 HC-$3.29

*Artificial Intelligence; *Computer Science;
Deductive Methods; *Logic; Logical Thinking;
Mathematics; Philcsophy

The primary aim of these five technical papers is to

indicate aspects of proof theory which may be of use in the study of
non-numerical computing. The three main papers are entitled:
"Checking of Computer Programs;" "Consistency Proofs and Programs for
Translators;" and "Experiments with Computers on the Complexity of
Non-numerical computations.” The author shows that many theorems on
computability in traditional metamathematics are of little use to the
computer scientist because they do not lead to feasible algorithms.
He also suggests alternative approaches to proof theory which would
be of greater applicability. (MM)

,\),,ﬂ‘

FIVE NOTES ON THE APPLICATION OF PROOF THEORY
| TO COMPUTER SCIENCE |

BY) ; U.S. DEPARTMENT OF HEALTH,
: ; EDUCATION & WELFARE
. . : OFFICE OF EDUCATION
. . :) THIS DOCUMENT HAS BEEN REPRO-
GEORG . KRE'SEL DUCED EXACTLY AS RECEIVED FROM
! THE PERSON OR ORGANIZATION ORIG-
: - : . INATING IT. POINTS OF VIEW OR OPIN-
: ’ i IONS STATED DO NOT NECESSARILY
. REPRESENT OFFICIAL OFFICE OF EDU-
. CATION POSITION OR POLICY.
\

ED 059894

© TECHNICAL REPORT NC.182

 DECEMBER 10,1971 o

© PSYCHOLOGY & EDUCATION SERIES

50
5!
52

53
54
55
56
57

58

-

X
60

6l

63

65

71
72

73
74

75 .

76
77
78
79
80

82

83

84
85

86 .

.87
88

89

- 90

"9l
92

93
”,

95

El{fc

Aruitoxt provided by Eic:

TECHNICAL REPORTS
PSYCHOLOGY SERIES
INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

{Place of publication shown In parenthases; If pu‘bllshed title is different from title of Technical Report,
this is aiso shown In parentheses.)

(For reports no, I.f 44, sae Technical Report no, 125,) .

R.-C. Atkinson and R. C. Calfee. Mathematical learning lheory January 2, 1963, (In B. B. Woiman (Ed.), Sclentific Psychologx. New York:
Basic Books, Inc.., 1965. Pp. 254-275)

P. Suppes, E. Crothers, and’ R Welr. Application of rrn!hemtlcel learning. theory and tinguistic analysis to vowel phoneme matching in
Russian words. December 28, 1962, i

R. C.-Atkinson, R. Calfee, G, Sommer, W, Jeffrey and R. Shoen.aker. A test of three models for stlmulus compounding with children,
Janiary 29, 1963. (). exp. Psychol., I964 67, 52-58)

E. Crothers. General Markov models for learnlng with Inter-trial forgetting. April 8, 1963 .

J. L. Myers and R. C. Atkinson. Cholce behavior and reward structure, May 24, 1963, Wournal math, Psychol., 1964, |, 170-203)

" R. E. Robinson’, A set-thecratical approach to empirical meaningfulriess of measu-ement sutements June !0 1963.

E. Crothers, R. Welr and P. Palmer. The role of transcription In the leaming of the orthographic representations of Russian sounds. June!7,. 1963,

P. Suppes. Problems of optimization in learning a list of simple Items. July 22, 1963, (In Maynard w. Shelly', Il and Glenn L. Bryan (Eds.),

" Human Judgments and Optimality. New.York: Wiley. 1964, Pp. 116-126) :

R. C. Atkinson and E J., Crothers. Theoretical note: all-or-none fearning and Intertrial for,ettlng. July 24, |963

R. C. Calfee. Long-term behavior of rats under probabifistic reinforcement schedules. Octoher |, 1963,

R. C. Atkinson and E. J. Crothers, Tests of acqulsition and retention, axioms for palred-assoclate leaming. October 25, |963 (A comparison
of paired-assoclate learning models having different acquisition and retention axioms, J. math, Psxchol'., i964, 1, 285-315)

W, J. McGIll and J. Gibbon, . The.general-gamma disteibution and reacticn times. Nuvenber 20 1963, (. math. Psychol., 1965, 2,1-18) -

M. F. Norman, Incremental lesning on random trials. December-9, 1963, (J. math, Psychal., I964,_, 336-35h)

P. Suppes. The developmnt of mathematical ooncep!s in childeen, Febmary 25 1964, (On the behavioral foundations of mathematlcel concep’s.
Monographs of the Soclety frr Research In Child Development, 1965, 30,.60-96)

P. Suppes. b.lthemtlcal coneept formltlon In chlldren. Aprit 10, 1964, (Amer, Ps!cho!oglst, l966 21,139+ 150)

R. C. Calfee, R. C. Atkinson, and T. Shelton, Jr. Mathematical model;__fg;urbaj learning. August 21, I964. (in N. Wiener and J.-P. Schoda
(Eds.), Cybernetics of the Ner:ous Syst Progress In Brain Research Amsterdam, The: Neeherla;)ds: Elsevier Publlshlng Co., 1965,
Pp. 333-349)

L. Keller, M, Cole, c.J. Burke, and W, K. Esm ‘Palred associate learning with dlfferentlal reviards. August 20, 1964. (Reward and
Information values of trial outcomes In palred associate learning. (Psychol. Monog., 1965, 79, 1-2)

M. F. Norman. A probabllistic moda! for free-responding. December 14, 1964,

- W. K. Estss and H. A. Taylor. Vigual detection Inrelation to display size and redundnncy of crltlcal elements Janunfy 25, l965 Revlsed

7-1-65. (Pm&on lnd Psychophyslcs , 1966, 1, 9-16) . ‘) B
7. Suppes and J. Daale. Faum-ua-ns o ;illvmru:"&‘u‘ﬂﬁ“ﬂg theory for Soniious 1ine processes. Febwiary 9, :'7‘65. (.,'. Tats, Psz».‘wl., is67,
4, 202-225) : : : ’

R. c Atkinson asd R, A. Kinchla,’ Alearnlng model for foroed-cholce detection experiments . Februery 10, I965 (Br J. math Stat, __!_chol
1965, 18, 184-206) :

E.J. Crothers Presentation orders for items from different categories, - March 10, 1965,

P. Suppes, G. Groen,andM Schlag-Rey. Some models for response latency In oalred-assoclates leurnlng. May5 1965 (J math, Psychoi.,
1966, 3, 99-128), :

M. V. Levlne. The: qenerollratlon function in the probnblllty inrnlng experlment June 3,1965.

D. Hansen and T. S. Rodgars. An exploration of psycholingulstic units In-Initial reading. July 6, 1965,
B. C. Armold. 'A correlated um-scheme for a continuum of responses. July 20, 1965, -

~C. {zawn and W. K. Estes. Relnforoemnt-testsequences In palred-associate learning. Augustl l965. (Psychol . Re parts, 1966, 18, 879-919)

S. L. Blehart, Pattern discrimination fearning with Rhesus monkeys. September |, 1965, (Ps!chol Reports I966 19, 3"—324) .

Je L. Phllllps and R. C. Atkinson. The effects of display size on short-term memory. August 31, 1965.
‘R. C. Atkinson and R, M. Shiffrin. Mathematical models for memory and Iearnlng. Septerrber 20, 1965

P, Suppas. The psyehologlcal foundations of mathermatics.” October 25, 1965. (Colloques Internationaux &u Centre Natlonel de Ia Recherche
Scientifique. Editlons du Centre National de fa- Recherche. Scientifique. Perls- 1967, Pp. 213- 242))

- P, Suppes. Computer-asslsted lnstructlon In the schools: potentizdities, problems, prospecls. October 29, 1965.

R. A. Kinchla, J. Townsend, J. Yellott, Jr., and R, C. Atkinson, Influence of correleted vlsuel cues on audltory slgnal detectlon

- November 2, 1965. ‘(Perception nnd Psychophysics , l966 1,67- 73)

P. Suppes, M. Jerman, and G. Groen. Arlthmetlc drllls end revlew on a computer-based teletype November 5, I965 (Arlthmelic Jeacher,
April 1966, 303-309. .

‘P, Suppes and L. Hyman. . Concept Ienrnlng with non-verbal geometrlcel sumull- Nopemher l5_; 1968.
" P. Holland. A varlation on the minlmum chi-square test. (J: math. Psychol., 1967,'3, 377-413), -.

P. Suppes. Accelerated program In elemenury-school jt ratics -~ 'th. second year. “November 22, 1965.. (Psychology iri the Schools, 1966,
-3, 294-307) = S . ' ‘

P. Lmzen and F. Binford. Loglc asa dlaloglcal game. November 29 1965, : . :

‘L. Keller, w. J. Thomson, J. R. Tweedy, and R. .C. Atklnson. The effects of relnforcement Interval on Lhe acqulsltlo'l of palred—assoclate
responses. . December 10, 1965 (J. exp. Psychal., I967 73 268-277) e

J. L Yellott Jr.” Some effee!s on noncontlngent ‘Success In human probnb]llty learning. December 15, l965 L :)

P Suppu and G. Gmn. Some countlnq models for flnt-gede performance data‘on slmple nddltlon fncts. Jnnuery 14 I966. (ln J. M Scandura ’
‘(Ed.), Rm-ch In Mathematics Education. - Washlngton, D.C.: NCTM 1967 Pp. 35-43 [. [T, : \ o

P. Suppes. lnfwnn!lon processing and cholcs behevlor. Jlnu'y 3, I966

- G. Greanand R, C.’ Atklmon. Mod.ll fwoptlmlzlnglhe lurnlng wooess.‘ February II l966. (Psxchol Bulletln, I966 66, 309-320))
- R.°C. Atkinson and D, Hensen. . Compuur-uslsted Instruction In lnltiel nedlng. Sunfwd project Maroh I7 I966 (Rendlng Research

Qwhr’y, 1966, 2, 5-25) .
P. Suppn Probd:lllltlc inference end tbe concept of toul evldence. . Much 23 I966. (ln J Hlntlkka and P Suppes (Eds.) Aspec's of
lndul:tlv. Loclc. Amshfdt!m Northvllolhnd Publlshlng Co 1966, - Pp. 49-65. . - 7 -
P. Suppu. The lxlmllc method in hlgh-school mathemltlc. " Awll I2, 1966. . (The Role of Axlomtlcs and Problem Solvlng In Mathematlcs. "
The thnm Boa'd of the. Mathemltlcel Sclences Wuhlngton, D. C. Glnn and Co.y I966 Pp. {)9-76. S ‘_\ .
) ’ (Contlnued on lnslde back cwer) L » e

FIVE NOTES ON THE APPLICATION OF PROOF THEORY
TO COMPUTER SCIENCE

by

Georg Kreisel

U.S. DEPARTMENT OF HEALTH,
ERUCATION & WELFARE
OFFICE OF EDUCATION

THIS DOCUMENT HAS BEEN REPRO-
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIG-
INATING IT. POINTS OF VIEW DR OP|N-
IONS STATED DO NOT NECESSARILY
REPRESENT OFFICIAL OFFICE OF EDU-
CATION POSITION OR POLICY.

TECHNICAL REPORT NO. 182

December 10, 1971

PSYCHOLOGY AND EDUCATION SERIES

Reproduction in Whole or in Part Is Permitted for

Any Purpose of the United States Government

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
STANFORD UNIVERSITY

STANFORD, CALIFORNIA

3

Table of Contents

Introduction

Note T. Basic Notions and Distinctions

Note IT. Checking of Computer Programs: An Example of
Non-numerical Computation

Note ITI. Consistency Proofs and Programs for Translators

Note IV. Experiments with Computers on the Complexity of
Non-numerical Computations

Note V. Remarks on Relevant Proof-theoretical Literature

21

26

35

Five Notes on the Application of Proof Theory

to Computer Science

Georg Kreisel

Institute for Mathematical Studies in the Social Sciences

Stanford University

Introduction,2 Let me begin with a manifesto. As will be evident

throughout thzse notes my background is in proof theory. not in computer
science. However--and this fact might easily confuse the reader--my in-
teresis here are almost diametrically opposite to those of most logicians
who publish on computer science. There will be little general mathematics;
and what there is, will always be subordina*e to the applications, as I
understand them. I realize quite well that professional computer scien-
tists (that is, people paid by computer science departments or affluent
firms) are often as much attracted by heautiful generaliities about compu-
tation as my fellow logiclans. Perhaps they can afford it because, through
experience, they have developed judgment on the relevance of these gener-
alities. Evidently I cannot hope to have this kind of judgment. Be that

as it may, let me set out here theoretical reasons for the philosophy

followed in these notes.

We know of course that there is something common to proof theory
and computer science: the formal rules studied in proof theory and the
computation rules, both for numerical and non-numerical computation, studied
in computer science are mechanical; indeed, the basic 'graad' idea behind
formalization was the mechanization of mathematical reasoning, long before
an even approximate physical realization of thiis idea by electronic machines
could be proposed. Turing's analysis of the notion of mechanical rule in

terms of an (idealized) machine led to recursion theory, the mathematical

theory of mechanical rules or, at least, of functions definable by such

3

rules. Consequently, general results 'about' mechanical rules will be

applicable both to formal Fules (in proof *heory) and computational rules.

In particular, this applies to well-known recursive unsolvability results.

1

3

But no subject (except possibly some mathematics) lives on negative
resulits., They indicate what not to do. This is tiie content of the
slogans: Proof theory begins where recursion theory ends, and similarly
for computer science, More soberly, by picking out specific, 'narrow'’
subclasses from among ali mechanical rules we shall find those +that are
relevant to proof theory and those (others) relevant to computer science.
For example, in proof theory the significant results are about specific
formal systems. The brutal well-known ones, so-called Frege~Hilbert
style axiomatic systems, are picked out by the mathematical content of
the sc-called non-logical symbols in the axioms (relafion, function
symbols); the sophisticated ones, discovered Ly Gentzen and Prawitz,
are picked out by an operational meaning assigned to the logical symbols.

In computer science there are additional conditions on feasibility (com-

plexity of programs, length of computation's It stands to reas-n that
for those narrower clasgsses of rules more significant positive results
are possible. To use slightly hysterical language: if there simply
aren't general positive results (to be found for the class of all re-
cursive functions), there Jjust isn't a possibility of a 'deep'! study
cf the geneiral case, /

The other extreme--or, better, error--that has to be avoided is
sometimes expressed by saying that ’computatiQn is an art'!. What is
meant, in terms of the preceding paragraph, is that there are no rational

or theoretical principles for choosing relevant classes of rules (formal

systems, respectively computation rules).u I believe that experience in
proof theory may be of heuristic if indirect value here. The early hope
in proof theory was that we could use a partial but very simple criterion

for choosing formal systems, namely, their completeness for the intended

interpretation., For example, when Artin and Schreier produced their

axioms for real closed fields (which seemed adequate for current algebra)
thgir sugcessful choice appeared like magic. Tarski's discovéry that
these axioms produced precisely those (first order) statements which are

true for the field of real numbers, gave a truly satisfactory explanation

of the choice made by Artin and Schreier. (I do not know if Tarski em-

phasized this aspect.) It is an explanation because each theorem of

current, algebra was expected to be valid for the reals. Now GSdel's

incompleteness theorem shows that the simple criterion of couumipleteness

cannot be used for the choice of formul systems for arithmetic, analysis,

set theory, etc. This does not at all mean that there is no principle
of choice; only it will have to be subtler than mere completeness. Be-
sides, even when, as in the case of first order classical predicate cal-
culus, we have formal systems complete w.r.t. validity, there are many
different axicmatinations (as already mentioned, campleteness makes only
a partial, in fact, rather brutal choice). The further choices needed,
&.d made by Gentzer or Praﬁitz, are just of & quite different order of
sophistication. Also, the discovery of significant ‘'subsystems' of
analysis in the literature is incomparably more sophisticated than, say,
that of (complete) systems for dense orderings (I use the word 'subsystem’
current in the literature: actually every formal system is a subsystem of
the set of true statements if the formal language contains arithmetic).
Needless to say it is not claimed that the same considerstions are
relevant to the choices of both formal syspems and computation rules.
Quite simply: at least in the most articulate parts of proof theory the

choices are made on epistemological grounds, that is, according to the

kind of understanding needed to recognize the validity of principles
(axioms or rules); the complexity of iterating these principles is rarely
a principal object of research. In computer science the complexity is
paramount. So one of the main problems will be to find the parts of
proof theory that are useful to computer science. The partiéular exam-
ples mentioned in the last paragraph are illustrations only; not only
of difficulties (of finding formal rules and of judging the choice) but
also of solutions to these difficulties, at least in some cases.5
It should also be remembered that, quite apart from the philoéophical
aims mentioned, proof theory often looked for systems fairly close to our
ordinary reasoning. This suggests a further reason why quite different
principles of choice are needed, simply on the assumption that human
reasoning (or, in crazy language, 'information processing by the brain')
has a different structure from mechanical computers: for example, very

mechanical instructions confuse the human computer. The practical effects

of this simple observation are far reaching: The mere fact that we find
it essy to solve some class of problems in, say, propositional calculus

is no reason at all for supposing that they are easy for a computer; or,
more formally, that there exists a short program. So it is not even easy
to Jjudge whether we are stupid when we are not able to mechanize reasoning
which is easy for us. In fact, Section 4 contains proposals for studying
such questions. The principle adopted is the suzplest in the world: The

single most surprising innovation of logical foundations is the reducticn

of our mathematical vocabulary: Does this destroy the practical possigiiity
of reasoning?

Finally, a word on terminology. 1 shall not use the Jjargon of com-
puter scilence (and shall try to avoid most proof theoretic Jargon, except
in the title of Section 3 which uses bobth). First of all, I don't know
it well enough--FremdwOrter sind Gliicksache. Secondly, perhaps in order
to compensate for the 'inhumanly' systematic character of computer lan-
guages, computer jargon is full of quite different words for distinct,
but closely related ideas, like compiler and translafor. I should prefer
a civiliczed language with a word for the common idez (translator) and
adjectives to qualify it.6 Thirdly, soms terms suggest, it seems to me,

a sensational but ill considered aim, for example, 'theorem proving'.

(For those who know the catechism, an outward and visible sign of an inward
and invisible disgrace.) I shall use 'non-numerical computing' or the name
of the particular area where I believe such computing t» be appropriate,
for example, in the currently active subject of mechanical checking of
programs (Section 2). Evidently there is nothing sensational in the idea
of a 'mere' checking of a computer program, much less so than in checking
mathematical proofs which are prima facie (and probably intrinsically)
non-mechanical. But, by being less sensational the idea is perhaps also

more feasible.

T. Basic Notions and Distinctions

NB. According to temperament the reader c¢an either glance through
this note before reading the others or simply go back to i% when one of the
basic notions or distinctions is actually needed.

T shall consider here principally (computation and proof theory in

connection with) arithmetic problems, and discuss afterwards modifications

needed in other contexts. Since we have 2000 years of experience in nu-
merical computation it should be easy to Jjudge whether our general considera-

tions are truly applicable (and not only aesthetically or theoretically
pleasing).

1. General orientation. o describe the relation between the aims

of computer science and proof theory briefly, one can usc the slogans:
Theory (or principles) of formalist mathematics
versus
Formalist theory (or reduction) of mathematics.
Computer science has as its objects (formal) calculations and tries to
develcp a theory of these objects. The intended meaning of, say,. an
equation a = b 1is that the formal objects a and b have been or can be
reduced, by given formal rules, to the same term (their formal value).
In contrast, proof theory, as originally understood, tries to establish

that, for a different (mathematical) meaning »f the formula a = b,

a =b is true for that méaning if (and, possibly, only if)

a and b have the same wvalue.

Example. Suppose we are given the formal rules for addition ir arithmetic,
with the symbol O and the successor symbol s: a+ 0 —a, a+ sb -sla+b).
Then O + sO = (s0) + O means7 that each side can be reduced to the same

term, namely sO (by using the second and first rule resp.).

The expressions a + b and b + a- with variables a and b can
evidently not be reduced to the same term by means of the rules above.,

7

Suppose, however, we interpret

(*) : a +b=5b+a

to mean: for each pair of numerical terms (O,SO,SSO,...) n and m,
n+m and m+ n have the same formal value for the rules of addition
above. Then; for example by the well-known Presburger-algorithm, there
are formal rules genersting all equations which are true about computa-
tions (in the sense above); but it is not enough to use the axioms:
a+0=a, a+sb=s(a+b) 'corresponding’ to the rules of addition.
In the modern proof theoretic literature (for example, under the

slogan operative Logik or operational logic) there is a great deal of

material which is not directly relevant to the original aims of proof

theory, but rather provides a theory of formal rules; it extends the

interpretation (*) of equations to logically complicated formulae. The

theory does not deal with special properties of computation rules actually

used in, say, arithmetic, but with general Post-rules. (Evidently, the
rules for numerical addition are set out as Post rules.)

This theory is coherent and has great aesthetic appeal. I have no
idea of its usefulness to computer sciehce, simply because it is not clear

whether computationally interesting properties of (camputation) rules are

expressed by the logically complicated formulae used (in contrast to

commutativity in the example above, a property of addition which we use
all the time, e.g., when checking the addition of columns in different
order).

The theory is often presented, particularly by Curry, in connection
with a formalist reduction of mathematics. As a result it is usuvally
(i) not taken seriously by those who find such a reduction implausible
(though the theory is not at all needed for such a reduction) and (ii)
not examined for its interest qua theory of formal rules (though, if it
has such an interest, this would be independent of formalist doctrine;
after all, some mathematics we do, unquestionably has formalist character,
for example, computing). Some defects of the notions used in that theory

will be apparent from the next paragraph.

o, Computations. Anyone who has read this far, has no doubt a pretty

good idea of what a computation rule or computation diagram is (for terms

in some language L, the diagram takes the form ti —ati, 1<i<N

ti containing 'meta’' variables). There arc a relatively small number

6

10

of useful notions about and, consequently, distinctions between various

kinds of computation diagrams which are scattered in the literature and

perhaps not'even explicit.

(a) Numerical and non-numerical computation (of numerical valued

terms) or: the choice of computation diagram. In canputations we normally

use well defined functions and rules which give a numerical value, that is,

a value O, s0, ssO, ..., or, more usually, a value in decimal or binary

notation. In short there is a standaxrd or normal form. This fect ig used

a good deal in the theoretical literature.
It should be noted that the use of normal forms is, in practice if

not in theory, in conflict with the practical requirement that answers to

(numerical) problems must be comprehensible. Thus while

lolOOO

1000

or even: the largest prime < 10

are comprehensible answers, neither of the standard representations above
would do.

More: formally, practical computation diagrams 'for' the exponential

function or for the so-called bounded least number operator (used in the

two examples above) must not permit further reduction; in other words,
though normal forms exist they must not be used. But it seems difficult

at this stage to be much more specific about an efficient cholce of normal
forms; cf. also IIT §2c and IIT $§3a. The reader should note that the choice
of language, stressed throughout these notes in connection with proofs
(*automatic theorem proving'), is also significant for computation.

Technical remark. If one wants to, one can easily state some pre-

cise 'general' theorems here. Given any of the usual codes for partial
recursive functions, we consider non-numerical terms, built up from these
codes, for computing numbers (for ‘'functions' with zero arguments!): for

example, by use of Kleene's bracket notation. In this way every recursive

function f is represented by a rudimentary function from numerals n

(not to numerals but) to codes of the value of f(n). However, there

is no evidence that this particular general scheme of using non-numerical

terms is also efficient.

(b) Consistency of computation rules w.r.t. (a congruence relation

between) normal forms. For any term t, if t can be reduced to the
normal (irreducible) terms t, and t, then t, and t, must be
congruent.

Examples. One familiar class of examples comes from computation rules
which are (i) valid for, say, an arithmetic interpretation, that is, there
are functions which satisfy the given rules in the sense of footnote 7
and (ii) non-congruent normsal terms denote distinct objects in the inter-
pretation. Outside arithmetié, a well-known example is provided by combina-
tory logic. (This may be relevant to computer science because Curry's
explicit intention was to analyze the basic steps in human mathematical
reasoning in terms of combinatoéors.. Even if this intention is absurd,
the possibility remains that this analysis applies to formal operations
which Curry assumed to constitute mathematical reasoning,9)

Warning. In the light of (a), consistency (in the present and
current sense!) is not a necessary condition for a computationally ade-
guate diagram.

(¢) Computability and strong computability (w.r.t. the notion of

normal, that is, irreducible form determined by the computation diagram

itself). Some, resp. every sequence of applications of the computation

rules to any term t stops. after a finite number of steps; that is,

it reaches a term to which no further reduction can be applied.
Evidently, rules can be perfectly valid in the sense of b(i) without

possessing even the (weak) computability property; for example, in case

of addition, we may have added 'by.mistake!: a — a + 0.

(d) Hilbert-Post completeness (of the congruence relation between

normal forms). If, for two non-congruent normal terms tl and tg,

the rules tl —atg and t2 —atl are added to the computation diagram
then all terms become interreducible.

This is a specialization of the traditional notion of Hilbert-Post
completeness for arbitrary formal systems: if a non-derivable formula
is added to the formal rules then all formulae become derivable. (In

the case of computation rules the only relevant formulae are equations,)

Discussion. The idea behind the Hilbert-Post notion is this:. to

establish maximality of the rules considered with a minimum of assump-

tions about the intended meaning (or, as formalists like to say, 'uses')

of the formal rules. As is well known, most familiar H-P complete sys-

tems satisfy--like classical propcsitional calculus--the abstractly
stronger conditions: For each formula F there is a substitution instance
Fl for which either Fl or —‘Fl is derivable. Also, quite often, we
simply know encugh about the intended meaning, e.g., of classical predi-
cate (or, for that matter, propositional!) calculus to know that we have
enough formal rules even if they are (or were) not H-P complete. Simi-
larly, in view of (a), we shall not, in general, expect computation dia-

grams to be H-P complete if we have chosen them after careful analysis of

practical requirements.

3, (Formal) deductions. Once again (as in §2), the reader may be
assumed to know what a formal system or, equivalently, a system of deduc-
tion rules is.lo As in §2, we may distinguish between the problems con-
nected with (analyzing) given formal systems and with choosing formal
systems; cf. §2a concerning the choice of camputation rules and even of
the concept of normal form. S0 much is clear.

Now there is a further element of choice, namely, the choice in the
order of applying (compiuttation and deduction) rules. Certainly not all
computation rules need be deterministic; if we want to compute O-t,.
for a complex term t, we may either first work out the numerical value
of t and apply the recursion rules for multiplication or we may apply
the rule Oea — 0 (if the latter is included; the recursion rules will
always be included); Again, if we have a rule for computing a function of
two arguments there is a choice in the order in which the arguments are

treated. But it may be expected that within such a well-organized frame-

work as a system of camputation rules, this: freedom of choice causes little

havoc. In contrast, as we know from experience in mathematics, being given
formal deduction rules is of little help. (In the analyses below of the
'help' involved the lettering of subsections does not correspond to §2.)

(a) Looking at deductions and searching for deductions (in a given

formal system). Without wishing to be ‘'mathematical' in an affected sort

. " 9

of way, I'll begin by setting out the distinction in the form of two
kinds of computation diagrams.

Evidently, since operations on deductions are involved, the objects

or 'terms' of the computation diagram will be (whole) deductions, not,
say, derived formulae.

Cese 1 (the familiar set-up). This is relevant to a search for

deductions. We start with: d —d’ if (the deduction figure) 4’ is
obtained from d by adding a formula which is an immediate consequence
of formulae in d; 'immediate! by application of the given rules.

There is no end to this procedure, and an independent criterion has

to be added to create a semblance of a computation diagram with its ir-
reducible or normal forms. What is indeed implicit in ouwr ordinary way
of thinking is that we wish to decide some formula A: Writing Ke,

we add the restriction d »d’ only if d —d’ and d contains neither

A
the formula A nor the formula =—A (because in either case the search

is over).

Note that the questions of §2a in connection with a choice of ir-
reducible forms have a parallel here. Specifically, d need not con-
tain the formula A itself but say a formula A’ which is propositionally

equivalent to A, This induces a congruence relation between ‘normal'

forms, that is, derivations containing A’ or (=A)’. The concepts of
§2(b)-(d), with *computability' replaced by 'formal decidability (of A)',
are self-explanatory. What makes formal rules of 'little help' is th&t

for the ususl formal rules (with mddus ponens and without 'strategies!,

that is, additional rules of choice) we do not have strong computability.

This is a good negative criterion; but of course strong computability is
not enough practically if the execution of the computation is not prac-

tical. _ _ .
Case 2 (the sophisticated set-up). This is relevant to the analysis

of (given) deductions. According to previous training the reader may

think here of cut-elimination or elimination of redundancies where, in

aptly-named natural deductions, an introduction (of a logical operation)
is followed immediately by its elimination. In both cases we shall speak

of a normalization step. The computation diagram‘runs as follows:

10

.14

d -3’ if d’ 4is obtained from & by applying a single reduction
step.

Now, in contrast to Case 1, d can be irreducible, namely, if it

is in normal form. Note here, for the normaiization steps mentioned,
d amd d’ au-omatically have the same end formula. The concepts of

§2(b)-(d) distinguish between different normalization procedures. For

example, it is open whether, in familiar systems, cut-elimination rules
are strongly computable, even when the allegedly 'equivalent' natural
deduction rules are.ll Naturally the terminology, e.g., of 'consistency’
in §2b, is meaningful only if the choice of the normalization procedures
themselves is intended to respect some preassigned meaning of the normal
deductions. The terminology is justified if non-congruent deductions are
intended to express different proofs (in the ordinary sense of ‘'difference
of proof' as used, e.g., in arguments about plagiarism) and normalization
steps are supposed to preserve identity of proofs.

(b) Conflicting requirements. Quite naively, it would be surprising

that the same criterion, for example, the selection of normal derivation,
should be useful for both the analysis of given deductions and for the
discovery of new deductions of some given formula. Perhaps one should not
ignore the ridiculous-sounding advice of mathematicians (who- are, after all,

welli known to be terribly inarticulate outside their own domain) such as:

one must not be too logical in research. As in footnote 4 of the intro-

duction, precise and merely logically satisfactory formulations may be
much worse than no formulation at all because their defect is likely to
be not obvious irrelevance but something subtler.

Example. In the discussion of Case 1 in (a) above, failure of
strong computability of the usual formal rules was mentioned; they are
wildly indeterminate. On the other hand, normal derivation rules or the
rules introduced by Herbrand are essentially deterministic: a formula
determines very closely from which preﬁise it must be deduced if it has
a normal derivation at all. But as already mentioned, this is no reason
at all for supposing that normal derivation rules (wvhich were introduced
for the analysis of given proofs) should also provide efficient12 deter-

ministic search procedures.

1L

15

The practical conclusion which I -have drawn from this observation

and which I apply in Notes 2 and % is to look for areas where the analysis

of given deductions is relevant.

(c) Digression on search procedures (to be taken up in Note 4). The

immediate purpose of this digression is to serve as a kind of mental
hygiene. There is a natural, quite traditional aim, to find a theory of
mathematical reasoning. Through formalization it is rossible to restrict
this (evidently hopelessly) general aim to, say, reasoning within some
limited context such as predicate logic. In addition we have some iso-
lated quite striking examples. For example, the logical theorems at the
beginning of Principia fall into simple decidable classes for which, as
observed by Wang, there is a quite effective mechanization. True, these
theorems do not at all have the look of typical mathematical theorems.
But as long as no alternatives are set out, there is a lurking doubt:

Shouldn't something similar be possible for much wider and more interesting

areas? It may well be objected that, even if, objectively, such a possi-
bility exists, this is no good reason why any particular person should
pursue it; he may not have the necessary talent or he may have more talent
in another area. But it seems to me reasonable to present some alternatives
which could remove the doubts without the appeal to self-analysis mace
above. |

We are able to prove or refute quite a large number of formulae F
in predicate logic with great ease. Often we are not aware of having fol-
lowed a method.

The lurking doubt is:

There ought to be a mechanical method, applicable to a large class
C of formulae of predicate logic, which will also decide the formulae in
F in a reasonsble time (where the greater speed of electronic computers
is to make up for the subroutines supposedly stored by the human computer) .
Usually one makes the additional assumption that the class C 1s charac-
terized by such syntactic conditions as prefix complexity or the number of
arguments of the relation symbols used.

Proposal. Granted that, in simple cases;, we are not aware of follow-

ing a method, let's look at the nature of the methods which are used when

we do!

12

The very first method that strikes one when inspecting the facts is

the extension of the language. (Indeedg no inspection is needed, because

fhe principal step “taken in the formalization of ordinary intelligible
reasoning was a reduction of the language!) Here we have two quite dif-
ferent applications, whick are both logically insignificant, but in dif-
ferent senses, as made precise below,

Definitional extensions. We consider consequences from axioms @?,

say for real closed fields. We extend the language by a binary relation
symbol O (to stand for ‘order') and derive a number of implications of
the form AO — B where A are axioms for an ordering. We make the

O)
definitional extension

VxVy[O(x,y) & dz(y = x + 22)]

and derive from (A, the formula Aoa Each BO is then, demonstrably
eguivalent (on the basis of QE}) to a formula in the language of fields.
These extensions are logically insignificant in the sense that (not
only in the present case, but under very general conditions) the introduc-
tion of the symbols can be eliminated. But: at what cost? for example,
in length of derivation? The example is by no means farfetched: it 1is
simply the formal counterpart to saying that our proofs are guided by
the meaning of the relation HEz(y = x + 22). Amusingly, electronic com-
puters furnish an excellent means for answering this question of cost!

Cf. Note k.

Introducing abstract concepts (in the sense of higher type or set

theory). We can use the language of the previous example, and consider
ordered fields, i.e., the axioms AO and the axioms for fields (among
ng). To derive B we may proceed as follows. We use the fact that

every ordered (grognd) field has a real closure. This is a set theoretic
statement. We can now apply set theoretic constructions to this real
closure and then deduce results about the ground field. As a guite trivial
illustration consider ~a simple - formulad:. of predicate logic. Writing

< for O and p for the general polynomial of degree n.

Ao - Vxl°°°vxn+l([l<§;n(xi < Xg4q APXepxg o < 0)] -0< PX *PX_,) -

A set theoretic proof proceeds by embedding the ground field in its

real closure wiere px, *PX <0 - Hz(x <z <X, Apz = 0) and

using the fact that a polyigilal of degree n has gi most n zeros.
In contrastAto the first example, the present use of set theoretic
concepts is logically insignificant (in the sense of being eliminable)
for the quite special reason that first order predicate calculus is
complete. OFf course the theorem above has also a first order proof,

in fact a quite simple one. We need only use Lagrange's formula

p(x

Y- 2 atep (T R0y
J

1<i<n J#i i

and observe that

< n+l J
J#k x5

has different signs when k =1 and when k = 1i + 1. But it is a

subject for research to see whether in general the use of set theoretic

methods is decisive for feasibility, that is, for effective execution in

time and space by an electronic computer or for intelligibility By a
human one. (I have in mind mathematically or logically intelligible
theorems, not the kind of ad hoc formulae usually constructed in the
literature on 'speed-up'.)

Preview. As the reader will see, only Notes 2 and 3 contain genuine
applications of proof theory. Both analyze given deductions, illustrating
the two important directions in proof theory, the methods of normalization
and interpretation resp. In Note 4 we experiment on search procedures,
using facts from proof theory merely as a guide for the design of

experiments.

IT. Checking of Computer Programs: An Example
of Non-numerical Computation

We shall consider principally, but not exclusively, programs for
solving some arithmetic problem with a parameter, n say. In terms of
I §2(c) and I §3(a), the formal counterpart to the informal distinction
between checking and proving (the validity of) a program is this:

Checking a program is a decidable procedure, by use of strongly
computable rules; a check provides indeed a proof, by very elementary

rules, of
(%) the function defined by the program solves the prcbhlem for all n.

In contrast, for the usual formal rules of inference, it is not (recursively)
decidable whether or not a universal statement of the form (*) is de-
rivable. This corresponds to the meaning of 'checking' as a procedure
which does not require ingenuity (in contrast to *cross checking'® which
does, but which need not constitute a camplete check).

Tt will be best to begin with a closer look at the familiar ideas
of ‘'arithmetic problem’ and 'soiution', including the choice of language
used to present the solution; cf. I § 2(a). The reader should not forget
for one moment that, in the context of checking, the program ' and our
knowledge of its properties are the principal objects of study; we are
not merely concerned with the sequence of states of the machine which
the program, objectively, determines; and a fortiori, not merely with
the graph of the function which the machine puts out; cf. footnote 3
of the Introduction.

1. Numerical analysis and programmation. The general form of an

arithmetic problem (which we consider here) is
¥mA(n,m) with parameter n ,

wnere the relation A may be defined by use of quite abstract concepts;
- for example, it may say that m is (a code for) an approéimation,vto
accuracy 1/n, to the solution, at the origin séy; of some differential
equation in Hilbert space.

Numerical analysis, by use of proofs not mérely by mechanical checking,

provides more or less explicit solutions in terms of a function f (of n)

15
#1419

determined in familiar terms, for example, 2 or [log n] (the integral
part of log n). One sometimes says that numerical analysis provides an
algorithm; but, strictly speaking, the algorithm is only tacitly under-

stood because in numerical estimates not the procedure of calculation but

only the values of the function are relevant., In fact, numerical analysis

provides in general not an algorithm but rather a simple functional equa-

tion for ~.f .which suggests an algorithm, e.g., in the case of o
Vp[£(0) =1 Af(p + 1) = 2f(p)] &

Numerical analysis has done its job when it finds such a functional property

or equation &(f) and a proof of
3(f) —»A(n,fn) .

(In 83c below we give some formal conditions ensuring that & does

determine an algorithm.)

Programmation consists in making explicit, in mechanical terms, the

algorithm ‘fsuggested’ by the property &. Roughly speaking, checking
a proposed program Te consists in establishing by the elémentary methods
implicit in the idea of checking that e satisfies &. Qur problem
here consists in making explicit what these elementary methods are. This
involves of course some general conjecture on the type of properties &
which occur in practice (but not on the type of relation A!).

The following example does not merely illustrate the difference
between numerical analysis and programmation, but gives a good idea of
the qualitative dii'ference between a recursive and a feasible solution,

discussed at length at the end of Note 1.

Instead of the single wvariable n, we consider the gquadruples

ny, Ny Dy and n’ and the relation
2+n' 2+n' 2+n’ 2+n' 2+n' 2+n'
(m=0%& nJ n, = ny) V (m=1¢% n; n, # ny) .

Without numerical analysis, we have the cobvious program of fgimply

evaluating’

2+4nt 2+n? o+n't

n, + n, s and n3

16

S

for given positive integers nj, Ny, ny and n' and ‘comparing’ them.
The program must translate these instructions to the machine. With
numerical analysis, that is a (partial or complete) proof of Fermat's
conjecture, we should use a totally different program (for the same

function of Ny, Doy Nz, n'!), namely

ny, Doy Ng; n' - 1.,

Amusingly, on the basis of current knowledge,13 as far as existing com-

puting machinery is concerned, only the second program is feasible (for

numerical computing): for those numbers for which Fermat's conjecture

2+n’ 2+n' 2+n'

is open at least one of the numbers ng PRRR EON and n3 is so

large that it could not be stored in any machine'’s memory at all! A
zauch more sophisticated example will be given in IV §2b.

2. TFormalization of the concept of ‘checking': definitional

equality (brutal approach). To start with, I want to convey an idea
for such a formalization which a programmer, relying on his Judgment and
experience, may occasionally decide to use. It is evident that any appli-

cation will depend on the programming language, that is, what precisely

the symbol 1 stands for in §1, and the possibly non-numerical terms

(cf. I 8§2a) chosen to present the (numerical valued) solution in the
particular application. I should try to refer the formalization to
theories of programming languages or of (non=numerical) notation systems
for natural numbers if I were convinced that any known theory is even
remotely correct. As it is, the chance of introducing a systematic
error by relying on current theories seems more damaging than the vague-
ness which results from giving .ohly: an . illustration (as I do below).
In the next section I shall try to discuss limitations.

Proposal. Assume that the critical properties ¢ of §1 supplied
by numerical analysis are conjunctions of equations ;= ti (1 <1i<N)
between terms built up from £, +the numerical variable p, and signs
for specific programs (constantsg successor operation, addition, multi-
plication, etca), Assume further that, for any program e and any term
t{m] built up from Moo P and the signs for specific programs (as

above), a program is assigned to t[n]. Then we define:

17

e is checked for & if for each i, 1 < i <N, the

same programs are assigned to ti[n] and t;[n]°

The question whether or not the same program is assigned to two terms is
supposed to be decidahle, and this constitutes the elementary character
of 'checking'.

Remark. It is familiar from recursion theory that for quite

elementary formal systems, specifically any consistent r.e. extension

of formal primitive arithmetic PRA, it is not decidable whether an equation
between two terms containing a variable (p) dis formally provable since
the sets

(t,,6,t—=t, =t,} and {t ,t.:dnk t.[p/n] ¢t [p/nl)
1272 ppy 1 2 IR 2

are recursively inseparable. (Here n ranges over numerical terms and
t[p/n] is the result of substituting n for the variable p in t.)
I1lustrations. Probably the reader understands the proposal pretty

well, that is, the ideas of: program assigned to a term, and identity
criteria for programs or, equivalently, definitional equality between
terms. For deepening his understanding he should look at the relevant
literature cited in footnote @ of Note 1. Finally,; since in terms of

I §3a we are looking here at genuine; terminating programs only, perhaps
an even better illustration of (or approximation to) proposed applications
would be got from a language in which every term denotes a terminating
program, as is the case with typed combinators; for arithmetic problems

one adds (typed) recursion Qperators.l Whatever their mathematical appeal

(or use in other contexts) the usual combinators do not seem to present
any advantages here; specifically the definabilitywof an (even) type free
recursion operator does not seem worth the price of introducing expres-
sions for which one does not know whether or not the corresponding program
terminates. And--perhaps this is a principal point--it cannot be assumed
that the BASIC IDEA OF THE WHOLE PROPOSAL (which comes from the familiar
experience of knowing whether or not two familiar definitions denote the

same program) EXTENDS UNAMBIGUOUSLY TO THE UNFAMILIAR (full) IANGUAGE

18
: ;{3;3

of combinators. So without any prejudice against future theoretical
studies on this point, I suggest that the reader concentrate on strongly

computable computation diagrams in the sense of I 82(c).

Example. We suppose descriptions of programs to be given by terms

built up from typed combinators (of type: O -»0); cf. footnote 9 of
Note 1. Two such terms denote the same program if and only if their

(unique) normal forms are congruent, that is, the normal forms are

canonical or standard descriptions of programs. Since each term has a
normal form, the required decision can be carried out by working out the
normal forms.

Corollary. (to footnote 12 of Note 1). For practically efficient
solutions it will be necessary to find (sgb) classes of terms for which
an equivalent but computationally simpler criterion of definitional
equality can be given. Naturally, as in footnote 14 above, the equivalence
proof need not at all be elementary.

3. Discussion of the formalization (proposed in the last section).

(a) At first sight the sense of checking seems to be unduly narrow. 1In

fact, a program m_, is, of course, a perfectly good solution even if

£
e does not check &, but simply satisfies ¢&. The justification for
the narrow definition, though simple, is often overloocked.

If, as a matter of empirical fact, programmers tend to

write programs which do check the conditions discovered

by numerical analysis, it makes good practical sense to

exploit this fact.

In this sense the proposal involves an (empirical) hypothesis about
programmers which has to be verified.
(b) Note, however, that the notion of definitional equality(on which

the formalization is based) is rather wide unless we are planning to use

the program for a large number of valucs of p. It ignores the steps

needed to go from the description t{w] to its normal form, that is,

to the program described, or, equivalently, to its canonical description.

It is of course conceivable that an even sharper notion of checking is

valid which is based on a narrower notion of definitional equality;

19
. R3

s

'valid' in the practical sense above of being respected by actual program-
mers. The discovery of such a notion would probably be at least as use-
ful as the kind of mathematical discovery considered in the Corollary at
the end of §2.

{c) Concerning the general hypothesis on the form of functional
properties & supplied by numerical analysis (according to §1), one
can distinguish three kinds.

(i) The equations, read fraom left to right, translate into strongly
computable computation rules; this is the case in the example given:
£(0) -1, f(p + 1) —2f(p) (when supplemented by rules for doubling:
2.0 -0, 2(p+l) - ({(2p) + 1) +1)). _

(ii) &, that is, Vpéo(p,f) provides a finite™ definition of f,
that isj VmEndg ([(Vp < q)@o(p,f)] —fm = n).

In this case f is recursive but the equations in & do not necessarily

0
provide a computation diagram.
(iii) Conceivably numerical analysis provides a & that defines T

uniquely but not campuftationally, for example,

Vplf(p) = 2f(p + 1)] .

Only f =0, i.e., Vp[f(p) = O] can satisfy this condition since if
f(p) =k, f(p+ k) = ko2 ¥ hich is not integral. But, presumably,
the numerical analyst will himself provide this little argument and thereby

replace the condition by
vplf(p) = 0) .

(&) Concerning the existence of genuine uses of the present proposal
there can, of course, be no doubt inasmuch as I was able to appeal to
such familiar material as exponentiation or doubling (only the range
of application is in doubt). For the same reason the weakest point in
the illustration is the use of mathematically 'interesting' and therefore
unfamiliar material, such as the typed cambinators with recursion. No
doubt more experienced people would be better able to judge at the'present

stage. /

20

24

IIT. Consistency Proofs and Programs for Translators

The kind of 'translator' meant here is supposed to start from a
(formal) language relatively close to actual reasoning in arithmetic
practice and to go over to computer programs. As a matter of empirical
fact, actual reasoning uses non-constructive principles; as is well known
the relation between non-constructive proofs and 'corresponding' programs
is problematic. Roughly speaking, consistency proofs and their develop-
ments solve these problems; in fact, this kind of use of consistency

proofs is often considered to constitute their mathematical significanceal

Since the mathematics involved has been developed actively over half
a century, it will be possible to be quite brief by referring to the
literature. The main point of interest is to indicate in what respects
the existence of fast computers offers new (practical) uses for some of
the existing consistency proofs, or makes developments desirable which
would have no value to the human computer.

1. Generalities. (a) To avoid confusion when reading the literature

the point made already in the introduction must not be forgotten: the
official purpose of consistency proofs (formulated by Hilbert for philo-
sophical reasons) is not only irrelevant to computer science but contrary
to computer interests; cf. also footnote It of Note 2. Hilbert's aim was
to show;, by elementary metamathematical methods, that if a universal
statement ‘yxA® (with primitive recursive A) is non-constructively
provable then (¥) each numerical instance can be checked by computation.
But for the computer it is quite sufficient to know the fact (¥*); he
gains nothing from knowing an elementary proof. The fact alone permits

him to add an additional computation rule, namely, the subroutine: when-

ever Alx/n], for numerical n, is supposed to be worked out (by computa-
tion) the additional rule says: write 'true'. From the illustration in

II §2 in connection with Fermat's conjecture, it is clear that a computer
scientist (that is, numerical analyst) who knows only elementary constructive
methods of proof is liable to be at a disadvantage here: he could not justify
the use of this subroutine which can greatly shorten the work; more pedan-

tically, which shortens the work whenever computations of A[x/n] are

21

25

needed for many n and we have a non-constructive, but no elementary
proof of VxA.. The 'constructivist' could, at best, make the empirical
prediction that the subroutine will 'work’.17
(b) In point of fact, most of the metamathematical studies which are
described as 'consistency proofs' establish more. For arithmetic problems

in the sense of II §1, but with A restricted to decidable relations they

provide provide an explicit scheme for defining number theoretic functions

such that

If p is a derivation (in the non-constructive system) of
dmA(n,m), they provide s defined by means of the scheme
such that VnA(n,nbn).

Of course, once again the mere validity of the rules considered
(when applied to arithmetic) is sufficient to ensure the existence of
a program T s quite independently of any hypothetical proof p of
HmA (n,m), namely,

Compute A(x,2), A(n,1), ... until you find an m such

that A(n,mn) holds.

If EmA(n,m) is (seen to be) true (by non-constructive means) the program
terminates (or: is seen, by the same means, to do so).
In view of the irrelevance to computer science of the metamathematical

methods used, only a detailed study can decide whether the program supplied

by nb is more efficient than T * (It is tempting to say here that one

surely knows 'more' if one knows a proof p than if one merely knows the

truth of #mA(n,m); sure, but is this additional knowledge computationally

relevant?l)
Remark. In terms of II §1, the justification of the program n
requires numerical analysis. Suppose @p is the functional property

used for the definihg equations of np; then we have to have shown:
@p(f) - A(n,fn) .

In contrast, the program requires no numerical analysis.

iy
A

(¢) It is well known that for logically more complicated relations
A(n,m), of the form

YgB(n,m,q)

22

=6

(B primitive recursive), VndmA may be non-constructively provable,
but there is simply no recursive function f at all which satisfies:
VnA(n,fn)° In this case, ‘consistency’ proofs for the non-constructive

principles considered, may be used to provide constructive interpretations,

discussed at length in the papers cited in footnote 1€ above.
In general the value of these interpretations is purely logical.
Specifically, and this is in sharp contrast to (p) above, for logically

complicated A; the non-constructive meaning of VnimA may be (mathe-

matically) interesting--bien entendu: to the non-constructive mathema-

tician who understands this meaningl--but the constructive interpretation

(of VnHEmA) is of no interest--to anybcdy. o the principal problem
here is to look for those casgss which ars interesting.

Exception (fiom the Digression on pr 135-136 of the paper cited
in footnote 2 of the Introduction). Little has to be added to Herbrand's
constructive interpretation of classical predicate caiculus to convert
Roth's non-constructive proof19 of the well-known Thue-Siegel-Roth theorem
into the refinement 'by'Davenpor't--Rot;ol9 This refinement was of interest
inasmuch as its authors decided to devote a separate paper to it.

2. Programming translators: +he present evidence. (a) There is

no shadcw of doubt of the usefulness of (knowing) consistency proofs.
People working in number theory, quite consciously and explicitly, wanted
to know bounds for existential theorems proved by non-constructive means
and, as a matter of historical fact, got lost when trying o obtain these
bounds without theoreticsl knowledge of consistency proofs: the(dir)
light of nature was not enough. Without having to apply the theoretical
knowledge in detail, just having the general principles in mind, made
it easy, in accordance with footnote 8 of Note 1, to obtain the desired
bounds. But this does not yet constitute a reason for actually program-
ming a translator; gquite tririally, inasmuch as general knowledge was
sufficient (for the bounds above) there is no need to do more about it
unless one has new; ambitious tasks in mindﬂ

(b) It seems plausible thaﬁ, as far as applications to computer

science are concerned, the general ideas of consistency proofs but not

necessarily the specific schemata of functions (leading to the programs

ﬂb in §1b) are useful. Quite generally, the currently open problems

27

really concern the details of the specific schemata, since the theoretical

possibility of constructivizing the bulk of mathematical practice has been

established. Neglect of this fact has led people to rehash, at length,
dead issues.

(c) The general conflict between logical and computational purposes
(which we are talking about) can also be put as follows. Consistency
proofs qua logical contribution tell us the nature of the problems in-

volved in constructivization, in other words, what 1s, generally, pos-

sible. It is not reasonable to suppose that the same piece of work

will often be useful for actual understanding of particular problems.
Specifically, to take one of the non-constructive proofs considered

in the papers cited in footnote 16, knowledge of consistency proofs

allowed one to see (the theoretically interesting fact) that without

new ideag one oboained a bound

B

(En < 22 Y{n(n) > 1i(n)]
from Littlewood's non-constructive proof of
@n[n(n) > 1i(n)]

where m(n) denotes the number of primes <n and 1i the logarithmic
integral. But we now know (the practically more interesting fact) that

by judicious use of new ideas and a fast computer one has

(8n < (1465)-101165)[n(n) - 1li(n)] 2t

In the last analysis the reader will simply have to decide for himself,
if or to what extent the theoretical knowledge helps him in his practice.

3. Speculation on systematic uses of fast computers. As already

stressed at the beginning of §2, there is no doubt about the possibility
of intelligent ad hoc use of computers in extracting bounds from non-
constructive proofs; for example, in the paper cited in footnote 21.

But it is more difficult to formulate good general principles for such

uses; or, put differently, it is difficult to apply to the present topic
of translations (from non-constructive proofs to programs) the well-known

general criteria on fruitful uses of computers.

24

TUL .

(a) Principle of the middle-distance. I suppose the most familiar

criterion is this (which, as pointed out at the end of Note 1, is not
satisfied by so-called automatic theorem proving). We have available 3

conditions: (i) a formal analysis of a problem, in our case of extracting

bounds from formal derivations in non-constructive systems; (ii) the

analysis is not so simple that we can apply it lefficiently' ourselves;

(iii) the analysis is not so complicated that it cannot be used by (2xisting)

computers either.

To make progress we must look at the details of consistency proofs
and the preparation needed in their application. The first point that
helps is that we do not need a 'fully formalized’ argument. One soon
learns to separate irrelevant inferences and concentrates on critical
oneso22 The bounds obtained by use of a consistency proof depend (onily)

on the syntactic properties of the formulae appearing in these critical

inferences. What can the computer do that we can't or won't do?
Speaking from my (limited) personal experience a human computer soon
gets bored trying to determine the syntactic complexity of the relevant

formulae, and then makes quite rough estimates. The loss of ccmputational

efficiency is hidden because we use non-numerical terms in presenting the

solution (ef. I 8la). Thus in $2c we have

B

22" ona (1.65) 10M105

2
size, not {(human) intelligibility, makes a marked distinction between
these two terms.

Suggestion. Perhaps there are occasions where a computer can produce

a significantly lower bound without any new ldeas, but as follows. We

take the explicit definitions in an informal proof, we take the critical
inferences (expressed of course by use of those explicit definitions)
and simply let the computer work out the syntactic complexity of the
formulae obtained after eliminating the explicit definitions°25
(b) Developing the suggestion above, one could look for a very

special kind of ‘gutomatic' theorem proving, namely reductions of the

syntactic complexity of the critical formulae (of course, reductions

by means of non-critical inferences).

25

[

59

This particular proposal is related to the general aim of using com-

puters to fill in 'gaps' in elementary informal proofs. But even if, per-

haps for the reasons given at the beginning of I §3c, this general aim
has no feasible mechanical solution, the narrower problem of reducing
syntactic complexity may do: it certainly has a more mechanical look.
Also this problem does not involve any (artificial) reduction of the
language used (which is the 'logical' device that, 1in these notes, is
held responsible for inefficiency).

Warning., All I can hope to have done here is to have made a case

for studying problems which, for the widely accepted doctrinaire views

described in footnote 18, are underestimated. There can, I think, be

no true progress until we have found a specific problem, where we really

want to know the bounds and therefore can judge whether some given solu-

tion is satisfactory. Afterwards we can build on the solution.

IV. Experiments with Computers on the Complexity
of Non-numerical Computations

In Note I §3c, in connection with search procedures for proofs, that

is, 'automatic theorem proving', the role of extending the language of

predicate calculus (in human proofs of logicalgh theorems) was discussed.

The formulstion of this role in precise mathematical terms is quite ob-
vious. Moreover, given & particular set of deduction rules the problem
of determining bounds for the efficiency of search procedures (average
length of searcheg) is of course mathematically well defined. But all
this is irrelevant, on the practical philosophy guiding these notes,
since the general problem is too complicated combinatorially and therefore
not likely to be (practically) rewarding.

Rather; we should like to make use of the experience we all have

of mathematical proofs to pick out particular cases which have a chance

of being typical. This is all the more important in the present context

since there is a genuine possibility of using computers to help study

26
.30

such a particular case, but none of‘using them directly for the general
mathematical problem above. The reader should note that this proposal,
of using computers on such typical particular cases, is itself a good
example of the ad hoc uses of computers described at the beginning of

IIT §3 (so-called 'man-machine interaction'): searching through search

procedures would be hopeless even for computers; however, for some par-
ticular examples and search procedures, analyzing the length of the search
seems hopeless for a human computer (even if he is allowed to use all his
mathematical ingenuity25); but by the very nature of the problem, a com-
puter can, always, be used to decide whether the particular procedure is
practical for this computer to solve a particular problem: Just set the
computer going and let it run for the time you have available!

The basic question is of course: how good is our Judgment of which

cases are typical? Since a fair amount of computer time (where time is

money, and not merely ennui) is needed for the kind of experiments I have
in mind, let me begin by expanding the argument in I §3c for giving up the

"1ogical' point of view. But the discussion is not needed for §§2-3.

1. Some consequences of the chase after logical completeneg_g.,2
The kind of completeness meant concerns not only completeness (of proof
procedures) w.r.t. validity, but also so-called functional completeness
(of the language used).

(a) In connection with predicate calculus, if logical selection
criteria are to be used at all, the classification according to prefix
complexity is no doubt as natural as any. For this classification essen-
tially only (negative) undecidability results are available.

More importantly, for the most outstanding decision methods so far
discovered (for various classes of fields), the subclass of formulae

considered, namely,
(*) A - B

for fixed A and arbitrary B, is quite unnatural from a purely syntactic
or logical view: the choice of the particular A is not explained in
syntactic terms.

Conversely, at least at present, if we take such a known decision

method and ask for a more general class Q@) of formulae (with A €Q§>)
Q 27

to which the method applies, no syntactically natural definition of Qg
suggests itself. In the words of Wang's paper, cited in footnote 26,

p. 102: we have here a powerful (decision) method applied to the re-
stricted 'range' of formulae (¥*). But we don't really know what to do
with the method within the general framework of logical complexity (how
to 'explore' it, loc. cit., p. 102, 1, 11). Incidentally, the same situ-
ation arises with more advanced mathematical results when they are for-

mulated in some reductive vocabulary like that of axiomatic set theory.

We have here a typical example of the frustration produced when

one wants to apply the much vaunted dialectical method: itls all very

well to say we should buihigp;mevious knowledge (= synthesizing thesis
and antithesis); but which general framework (for a synthesis) is valid?
(b) In connection with (partial) recursive functions we have a sim-

ilar situation to the reduction classes in (a). As shown by various

27

'axiomatic' recursion theories or combinators: provided we have a
few 'simple' basic functions and some kind of composition, all partial
recursive functions can be defined and hence, once again, we have a
host of (recursive) undecidability results.

If we stay closer to computations, not the partial recursive func-

tions, but rudimentary functions used to code the sequences of states

of a Turing machine (or, equivalently, used to enumerate r.e. sets) are
fundamental; the partial recursive functions are defined from them as

described. (This example was already used in the Technical remark at

the end of I §2a). While of course equations between closed rudimentary
terms are, those between open ones are not, in general, decidable; cf.
the Remark in IT §2.

(c) Granted (a) and (b), a study of logically 'complete' languages
(for the whole of bredicate logic, resp. for all partial recursive func-
tions) would still make practical sense if there were at least a fair
number of significant cases where results about the whole, undecidable,

class specialize to practical camputation procedures in some practical

subclass; in other words, if the 'logically complete' theory were a good
practical theory.
I know from experience in proof theory that, at least there, one

has to make a fresh start; as was mentioned earlier, prcof theory begins

28
82

where recursion theory ends; cf. specific examples in §2b below. As to
computatinn, for example, Rabin's useful decision method for §£§9§2
does not seem to be a special case of a general result (perhaps on de-
finability--of course not on decidability) for, say, the whole second
order predicate calculus.

Discussion. By footnote 25, the general issue is far too inter-
esting simply to adopt some point of view (for example, of the present

notes) as a working hypothesis. One wants to test it. The difficulty

in testing is of course this: whatever view one adopts one is going to

get some 'results’; and if the view is coherent one will get mathematically

satisfactory results, even if the view itself is mistaken.

T suspect that the present issue is closely connected with the so-
called 'prejudice' of mathematicians against logic. Since most of those
mathematicians do not know technical logic their opinion is not based on
the actual technical level or mathematical quality of the methods used in
logic. What they do know is the ordinary meaning of 'logic' as the science
of reasoning or of the principles of reasoning; in other words, that the

subject of logic (applied to mathematics) is concerned with possibilities

of proof. And, in their inarticulate way, mathematicians want to say
that the kind of general knowledge of such possibilities provided by
logic, does not help them with actual understanding of a given proof;
cf. also ITII §2c.

The only part of the methanistic view mentioned in footnote 26 that

I am using in these notes, 1is this:

Human intelligibility is a qualitative indication of mechanical

feasibility.
As a kind of corollary:

A proof which surprises us will be difficult to find by a

general mechanical method.

We shall consider two measures of difficulty in §§2,3.

o, TFirst experiment: The intention is to find a problem, which is

formulated in first order language and is of undisputed mathematical
interest (and hence of feasible length!), but has no proof of feasible

length in the language of predicate calculus.

In other words, though some proof in predicate calculus exists, such

a proof is not only difficult to find, but difficult to write down (even

if found). Consider the proposition

There are no skew fields or division algebras over the reals
of dimension n except for n =1, 2, 4, 8 (real and complex

29

numbers, quaternions and Cayley numbers resp.).

For any fixed n, there is of course a formula in the first order language
of feal closed fields which expresses the existence of such an algebra of
dimension n by means of an dV formula, say EEV?V?Dn, namely, the
existence of elements (real numbers) aﬁj (1L < i,J,k < n) such that the

compositionn law or 'multiplication table'

. 1 n
(Xl,...,xn) o(yl,...,yn) = (ZZaijxiyj,...,ZZuiniyj)

satisfies the axioms for a division algebra (of course for all real
numbers x and V).

A statement of this form is decided by the (first order) axioms
for real closed fieids. Therefore for each n # 1, 2, 4, 8 there
exists some derivation of — H& VX VY D~ from those axioms.

CONJECTURE. There is an n, say n =6% or n = 255, for which
the formula —1HE?V§?V3?Dn can be stored in the memory of a moderately
priced computer, but the shortest first order deduction cannot be carried

out in a week on the fastest available computer.

The agsumption about feasibility here is that at most one week's computer

time on the fastest computer is available to the experimenter.
Evidently, in principle, the problem is purely mathematical once
tne intended deduction rules for predicate calculus (or, more precisely,

not for logical validity but for consequence from axioms for real closed

Eigigg) are given. I assume that this mathematical problem is too diffi-
cult. The experimenter should reflect, perhaps guided by the topological
proofs cited in footnote 29, on the most promising strategies and then
let a computer work them out. Here are some comments for orientation.
(a) The general reason for choosing this problem is stated quite
convincingly by Wang (cf. footnote 26, p. 107, second paragraph). The

topological proofs were found to be surprising. Moreover, the theorem

30
.34

in question had been conjectured a long time agc; so it was the proof,

not the resul?t which was surprising. Hence it seems not unreasonable-. to
suppose that some intrinsic properties of possible proofs--and not only
of the search for proofs--constituted an obstacle to its discovery; cf.
also the Remark at the end of this Note. (The particular conjecture is
problematic, Jjust because the general reason is quite commonplace.)

The present issuc should be distinguished from a superficially
similar problem which is definitely interesting for computer science

but of a different character, namely, the computational analysis of the

various decision methods for the theory of real closed fields. To dis-

cuss this matter we need a distinction.

(b) In its ordinary sense a decision method is given by a function

& from (closed) formulae A (of the theory) to {T,L}, where
8(A) =T if A holds, 8(A) = I if A does not hold;
or, equivalently, in the case of a complete theory, where
8(A) =T if A is derivable, 8(A) = & if — A is derivable.

Actually, constructive proofs of decision methods, for example, by quan-
tifier elimination, yield more, namely, a function SF from formulae to

formal deductions in a system F such that (for example, in the case of

complete theories)

SF(A) is a formal derivation in F of A if A 1is derivable,

SF(A) is a formal derivation in F of —A 4if —A is derivable.

Clearly the CONJECTURE would be refuted if we had a practical SF for
the theory of real closed fields (where F is the formal first order
theory). Equally clearly, the topological proof provides a splendid
for the class of formulae HE?VE?Vﬁ’Dn for n=1, 2, ... ! (This is
the ‘'sophisticateéd example' promised at the end of IT §1.)

From non-constructive proofs establishing the decidability by means
of a function & we can of course also derive an explicit 53 .where,

however, & contains also the principles used in the metamatnematical

proof of decidability.

31

BE(A) consists in evaluating ©(A) and then attaching the

metamathematical proof of the properties of ©J.
The reader will recognize the parallel between the relation of BF to
83 on “he one hand and the relation of numerical to non-numerical but
numerical-valued terms {(in I §2a or III §3a) on the other. The main
difference is that the wvalues of BF(A), BE(A) are proofs and not
numbers.

An even more brutal use of non-constructive proofs of decidability
{(which need not even provide an explicit 8) is this: one defines the

recursive function 5° ('D' for mere decidability)

BD(A) is the first derivation 4 (in some w-order of the
formal derivations of the given system) which ends up with

either A or with — A.

BD is recursive by (the mere fact of) decidability and recursive enu-
merability of the theorems of any formal system. There is no apparent
way of refining the brutal definition SD to get a practical &, let
along BF. The reader will have recognized here a particular instance
of the limitations of recursion theory discussed in §1c above. (He would
be amazed to know how often the simple Tacts above are ignored in the
literature, with hilarious results.)

(¢) It goes without saying that (as is familiar from all sciences
which involve both theory and experimentation) it c¢annot be expected that

all details of the experiment proposed are perfecti A skillfulao

computer
scientist may think of a more promising example to work on than the theorem
about division algebras. But it is possible to analyze in advance at least

in a general way what we can =xpect to learn from this kind of experiment.

If the ccnjecture is refuted (for some n which 'barely' misses

being a solution), one would simply have an unexpected success of automatic

theorem proving in its current sense. Also, I should expect from this a
contribution to algebra: a mathematician reflecting on this hypothetical
piece of first order algebra may discover in it some general features of

mathematical interest.

5§i£i

If the conjecture is established, we have only evidence against the

(whole) current trend in non-numerical computation, not against the pos-

sibility of using computers.

We have to look for relatively few additional notions about the
real numbers (enrich the field structure a 'little') in order
to shorten relatively many proofs considerably. And we et
to find a not negligible area of problems which are of iuierest,
and have computer-solutions by use of these additional notions
(problems which do not have computer-solutions without them nor

humanly performable solutions with them).

To remove a quite unjustified air of unreality from this task, it should

be observed that it is analogous to the task which the ‘abstract' mathe-

matician sets himself (except of course that the reference to 'computer-

solutions' is to be dropped); 'humanly performable' means: comprehensible.
The mathematician's task is not finished even when there is a practical
decision method for all formulae of a language! He still wants to find
infinite or even large finite classes of formulae for which he can tell

us the result of applying the method, in short, he really wants to solve
problems.

Inasmuch as the organization of a camputer is different from our way
of thinking, the computer scientist cannot expect to use exactly the same
solutions as the mathematician. But one would expect the mathematician's
'unsystematic’ work to provide a better general guide than the systematic
parts of logic. On this score proof theory seems to stand a better chance
of being useful than say model theory or recursion theory Just because of--
what to many logicians is--its principal 'defect': it studiles specific
systems, specific processes derived fram an examination of our ~intended
meanings, and has to search for principles of choice (which even after
they are found may be less convincing than the choices themselves).

3, Second experiment: Here the intention is to find a theorem

(bien entendu, again of undisputed interest) which we know to have relatively

short proofs in a given system; but no reasonable universal search procedure

could be expected to find such proofs in a feasible number of steps.

33
37

Consider the arithmetic propositions:

(i) n=90yv —1n2 = 2m2

i.e., the irrationality of the square root of 2, and

a a

Qi m?=0p for q = 3, 4, ...,

(ii) nemep = 0 V—n

i.e., instances of Fermat's conjecture.

Both (i) and (ii) are written in the language of the ring of integers
(that is, + and X only). Certainly (i) has a relatively short proof
in the first order theory of the ring of integers, including induction.
And (ii) has such a proof, for instance, for q =3 or g = L,

The known prcoofs of (i) and of (ii) with q = 3, were certainly
felt to be surprising. One striking feature in both cases is that, as

ordinarily formulated; the procfs use concepts which do not occur in

the statements of the theorems. More formally, they use concepts which

cannot be defined in the language of rings without the use of logical

symbols, for example, in (i) one uses divisibility or prime factorization,

in (ii) for q = 3 one uses Legendre's symbol. These proofs can be trans-

lated into the first order language of rings by using, throughout, explicit
definitions of the new concepts (and relatively simple proofs of their
'defining equations' when the new symbols are replaced by the definitions).

31

It is a mathematical fact that the theorems mentioned cannot be
proved in the theory of rings with induction, but without the use of
logically complicated formulae. Put differently, the selection of those
auxiliary concepts and of their definitions in the tirst order language
of rings is the central problem,

My impression (or, as pecple nowadays like to say, Yintuition')
is that tne selection depends, practically speaking, on understanding
the intended arithmetic meaning of (i) and (ii). A possible computational
effect could be that universal procedures (for predicate logic or perhaps
even ring theory) would not find proofs quickly.

Evidently the first step would be to take an existing procedure;

or rather choose among existing universal procedures the one that strikes

the computer scientist as best suited to this problem. Perhaps someday

3
. 38\"

one could even solve the mathematical problem for all universal procedures
(satisfying some uniformity conditions which exclude building the known
proofs of (i) or (ii) into the first few steps of the procedure); for some
g in (ii) the search is inordinately long.

The general points made in $2 apply also here mutatis mutandis.

Remark. In line with footncte 25 (and Wang's paper cited in footnote
26) it would seem to me quite interesting to analyze striking specific
facts in the history of mathematics in terms of complexity of non-numerical
computation. For example--as a foil to the conjecture in §2--it was proved

a,long time ago that the only associative division algebras over the reals

have dimensions 1, 2, or k:

QUESTION: Is there a relatively short first order proof of the fact

that there is no such algebra of dimension 64 or 2567

V. Remarks on Relevant Proof-theoretical Literature

Granted the basic phi. osophy going through these notes, namely, the
stress on the difference between logical and computational sigpificance,
the following corollary is plausible.

The logical highlights of proof theory, which are of course the
best-known parts of proof theory, are not likely to be of direct interest
to the computer scientist, . And, in particular, negative results are
something in the background, telling him what not to do or to expect.

For the same reason the computer scientist, especially if he is
interested in non-numerical computing, may find useful information in the
neglected proof theoretical literature!--'reglected' because, from a
logical point of view, it was marginal. The kind of thing I have in mind

is some new particularly elegant formalization or a particularly direct

treatment of some problems which, as far as logical interest was concerned,
had really been solved completely. There is of course no guarantee that

elegance or directness (for the human reader) will always have computational

-2
"39

52 NB: The neglect

value but the possibility is worth keeping in mind.
of this kind of work I have in mind is not accidental: without the addi-
tional computational analysis, the work is useless.

1. Propositional operators: -, A, V, —,; . Logically, most

of these are unemployed, at least for the usual truth functional inter-
pretation since all of them can be defined by superposition from, say

(m5 N Similarly, the propositional comnstants T and I can be de-
fined since, for variable p, P AP = L For logical metamathematical
arguments it is convenient to use only (—U A) in order not to have too
many cases to consider. But, for example, as long as the operators oc-
curring in a formula determine the rules to be applied in some non-numerical
computation it seems plausible that a compromise is most efficient, where
one uses not only - and A, nor, of course, a separate symbol for every
truth function.’.55 The following remarks may provide some perspective.

(a) Logically sophisticated readers seeing novel, more elegant for-
malizations tried to use them to &et new logically significant results,
for example, by applying the new work to intuitionistic systems which
(are known to have logical interest but) do not allow explicit definition
of the other propositional operations from (“b A) . This applies also
to §2 below.

(b) The step (a) simplified the analysis by tbe-mathematically-very

popular device of using a purely gualitative (indefinability) criterion

so that there is no need for closer guantitative analysis. In contrast,

the proposed computationasl use of novel formalizations needs at least some

assumptions about a correct measure of computational complexity. To Judge

significantly between two given formalizations it will not be necessary to

find z particular measure, but only a few evident properties of a correct
measure. ’

(¢) Logicians will of course try to exploit the last observation in
(b) above; see also the remark at the end of this note. But it is certainly

possible that good Eggy;edge of computer ‘hardware' may help one find an

explicit measure of complexity, and thus replace the judgment needed to

see what is significant or evident about such measures.

440

(&) Prsctically speaking, the reduction of our problem to the kind
of judgment just mentioned constitutes progress: probably more people
(experienced in computer science) have such Judgment than the taste
needed to recognize elegance in the proof theoretic literature. (It
is quite unnecessary to claim that matters of taste are not objective;
it is enough if people lack taste; Jjust as it is of little help to blind
people that differences in color are objective: what they need is an

extensionally equivalent criterion which they can use, such as those.

famous pointer-coincidences. Only the person who establishes the
equivalence must be able to see, and the same applies mutatis mutandis

to our problems about significance of computational measures.)

2, Prenex normal forms. Here again there is no doubt that for

(classical) logic, for example, in completeness proofs or in the state-
ment of such interpretations as provided by Herbrand's theorem (cf. the
end of IIT §1) it is rewarding to exploit the existence of prenex normal
forms. But we have already seen the computational absurdity of the
classification by prefix complexity in IV §la.

More importantly, if one is interested in the formal deductions

themselves (not only easily comprehensible interpretations of the kind

needed for Note III), it is morally certain that it is better to use
formulations in systems of natural deduction%L and normalization pro-
cedures; thése are not significantly simpler for prenex formulae: “In
contrast to Herbrand's treatment they alsc analyze quantifier free but
propositionally complex formulae. The moral certainty will become matbe-
matical if a correct measure of complexity of deductions and bounds for
the complexity (of the particular deductions involved) are available.

3. Equality. It is one of the more memorable facts of elementary
logic that the theory of predicate logic when = has the intended meaning
is reducible to ordinary predicate logic (in contrast, e.g., to the cu:ie
where we have a binary relation symbol < with intended meaning: a <D
if and only if a and b are natural numbers and a is less than D).
One simply takes all relation symbols Rj and function symbols fj

occurring in the formula F +to be treated and considers the implication

(¥) VxVx/{mx, =x!) » M[(R, & R) A(f, =£D]] > F
A § i . J J J dJ
1 J
where 3? is a sequence of wvariables containing the arguments of all the
Rj- and fj and Ré, F5 are obtained by substituting x/ for x, in
Rj’ resp. fj’ (No two symbols, R or £, have any argument in common.)
But as any writer on proof procedures knows,55 derivations of the

implication (%) have a quite different structure in detail from, say,

natural ¢=ductions of F using relevant equality rules. (I cannot re-

call exact references, but I seem to remember material in Japanese
journals and in a letter from K. Schiitte.)

b, Axioms and rules. The particular case of equality in §3 is

distinguished by the féct that, for a given F, a single (equality)
hypothesis is added, which, moreover, is determined by F itself. 1In

the case of the induction schema,
(*%) ¥x[{A(0,x) A Vn[A(n,x) —» A(n + 1,x)]) - VnA(n,x)]

we have also a reduction to predicate logic; it needs a single premise
if we use the schema only for formulae A of bounded compiexity; in-
stead of the equality axiom in (¥) of §3, we use (**) asanhypothesis
on F.

But, as any up-tc-date account of the matter shows, we cannot

deduce significant results for arithmetic from suca results as Herbrand's

theorem; at best we can hope to generalize che ideas involved in the proof
of the theorem, and apply them to the rule:

Derive VnA(n) from A(O). and VnlA(n) - A(n + l)]';56

5. Computation diagrams for various classes of functions. 1In view

of the connections between computations and deductions discussed at length
in Notes 1 and 2, it is clear that the proof theoretic literature must
also contain several computation diagrams or schemata which defines the
same class of functions but have quite different computational properties.BT
However, I am not competent to give a detailed bibliography.

CONJECTURE. Probably a good deal of information which is useful to
the computer scientist is contained in the details of work by people who

are best known for the logically important results they have obtained

38
“2“3123

while the elegance of their mathematical ideas may or may not be recog-

nized; as examples of the former we have the family J. and R. M. Robinson
or Schiitte; as examples of the latter, Kleene and some Japanese authors.
Tt must be remembered that mathematical elegance (which is relevant
to computational applications) need not be apparent from the look of the
printed page, let alone from the grammar of the introduction or the general
literary form--and therefore it is not easy for us to judge at a glance.
This is OL*y.one further addition to the many examples in these notes of
the differences in detail between human and mechanical requirements.
Remark. As far as I can see, a rather simpleminded idea of choosing
between formalizations, which I have pursued for some years, has not yet

been refuted:

To consider infinitary languages, where of course differences
are very much magnified (the ratio of ot is 'bigger' than
the ratio 22: 2!), and to hope that obvious ordinal measures
in the infinitary case will be a reliable guide to the subtle

measures heeded in the ordinary finite case.

Cf. the paper cited in footnote 36, top of p. 330 (and, for yet another
direction, App. VIII on pp. 383-384).

39
+43

Footnotes

lThis research was supported by National Science Foundation Grant

NSFGT-4U3x2.

2Some of the material in these notes appeared in: Hilbert's programme
and the search for automatic proof procedures, Springer Lecture Notes 125
(1970) [pp. 128-146, reviewed Zbl. 206 (1971) 277-278], which are the pro-
ceedings of a conference held in Versailles in December 1968 (on automatic
demonstration). The present version is not only better organized and more
articulate but, especially in Note 2, makes essential use of recent mate-
rial published in: Becond Scand. Logic Symp.; ed. J. E. Fenstad, Amsterdam,
1971,

5Mathematicians have studied only relatively recently so-called
non-extensional properties (of rules) which distinguish between two
rules even if both assign the same value to each particular argument.
For an example from arithmetic, consider the following two rules which
determine quite different computation procedures. Letting ~ mean:
is replaced by, the first rule says: n+~ O. The second rule says:
ne- n-n with two 'subroutines' determined by the familiar rules for
the predecessor (pred) and subtraction (2, as abve), that is, pred O » O
and pred (m+ 1)+ m; m - O my and m=> (p + 1) b pred (m > p).

L

The business about computation being an art supposes of course that
there are no aesthetic laws. Actually, I believe, quite often we have to
do with an illiterate expression of a sensible objection, namely, when
quite unimaginative classes of rules are preferred for no other reason
than that they are precisely defined (say, primitive recursive computation
rules). A vague idea which is fairly close to good sense is often much
more useful, *hough--by the very meaning of the terms--we should not be

able to give (explicit) reasons for this fact.

5At the risk of sounding arrogant T should like to add that, just
because of this Aifficulty, not only particularly gifted, but also quite
weak minds are attracted to these problems, the latter because it is more
difficult to establish the inadequacy of their proposed solutions. What-

ever my motives in saying this, I believe the remark is practically important

40
3 44

for computer science. Otherwise one is tempted to assums that, for example,
the whole subject of automatic theorem proving is hopeless Just because the

quite massive existing literature contains so little significant work.

6

0ld-fashioned experimental genetics and pseudo creative recursion

theory have a similar Jargon but like to use long words.

7This metamathematical meaning is not what we are taught in university
mathematics when the integers and (cardinal) addition are defined set
theoretically. There we prove, using our knowledge of set theoretic
notions, that the assertion ¥x¥y(x + 0 = x & x+sy = s(x + y)) 1is true
for the set theoretic meaning. In a careful course it is then explained
why, for numerical terms n and m, n=m is true for the set theoretic
meaning if and only if n and m have the same formal value (complete-

ness of the rules of addition; see para. 2 below).

8It is certainly true that in somé highly developed subjects (electric

networks) theory actually predicts experimental results; in-such cases a
developed formal theory is always useful. But theoretical or 'idealized’
notions can also be useful in more subtle areas by drawing ettention to
general features or, as one says, by providing a 'point of view'. This
can be achieved either by means of a mathematical formulation or by an

instructive example.

I%or further support, see J. T. Kearns, JSL 34 (1969) 561-575 and
(the supplementery) Part II of the dissertation by H. P. Barendregt,
Utrecht, 1971. There it is shown how Turing machine programs T (and
other computation diagrams) map into combinatory terms t in the sense
that the sequence of states determined by m corresponds to the segquence
of terms appearing in the reduction of the term tn'

lOIn the present context it would be pointless to tidentify' a formal

system with its set of theorems, that is, to forget everything about it
except the set of theorems: one wouldn't be making any deductions at all!
One may still ‘'identify', say, the rules for forming wff with the set of
wff as long as, quite realistically, it is easy to decide whether or not

an expression is a wff.

b1
45

[

J':LIn §la of: A survey of proof theory II, Second Scand. Logic
Symposium, ed. J. E. Fenstad, Amsterdam (1971) 109-170, I discuss some

Kleinarbeit which is required here. In the same volume there is also

an excellent account which 'accentuates the positive', by Prawitz, partic-

ularly pp. 282-283 on a connection between derivations and terms.

l?As always, maximizing an efficiency ratio does not consist in
taking some given class of cases (say'ili formulae of predicate logic
or all diophantine equations) and looking for a most effective procedurs
of handling them all: even if such a procedure exists it may be hope-
lessly inefiective. The problem is to discover a subclass which is (i)
still uséfulg but which (ii) admits a much more effective procedure. For
this reason 'logically' complete languages are rarely useful when efficiency

is the principal issue.

J'BEiee H. S. Vandiver, Fermat's last theorem, Amer. Math. Monthly 60
(1953) 164-167 and “hz literature referred to there.

-

LuThe reader should, of course, make use of the knowledge he happens
to have (for an illustration, it doesn't make sense to learn a new ex-
position even if it is much more elegant, provided a familiar one conveys
the same idea). A fairly adequate introduction is on pp. 225-227 of
Shoenfield's standard text Mathematical Logic, Addison-Wesley, 1967.

For more detail ses: L. E. Sanchis, Notre Dame J. Formal Logic 8 (1967)
16i-174, another is W. A. Howard, pp. 443-458 in: Intuitionism and proof
theory, Amsterdam, 1970. A word of warning: the fact that the weta-

mathematical methods used by Sanchis in the analysis of computability are

less elementary than Howard's is ﬁotally irrelevant for computational
applications, just as--at the end of §l above--any proof of Fermat's

conjecturs, however non-constructive, makes the difference between the

first, useless, (primitive) recursive programmation and the second which
appeals to (hypothetical) numerical analysis. To return to the two papers
above: 1t 1s more significant computationally that Sanchis establishes
strong computability for a greater variety of reduction rules than are
considered by Howard. (Computation is closer to genuine mathemstics than

to foundations.) See also the papers cited in footnote 11 of Note 1.

2T 46

[
15045 is studied in Kreisel-Tait, Z. math. Logik u. Grundlagen 7
(1961) 28-38.

16For example, in my paper: JSL 23 (1958) 155-182 and its predecessors

in JSL 16 (1951) 241-267 and 17 (1952) 43-58,

lTAt the present time actual mathematical (in contrast to metamathe-
matical) number theory does not know examples of such A; more precisely
there are no known examples of such ' VxA' which strike the experienced
number theorists as mathematically interesting. By IIZ§3b, it may well
be of great practical use to know the status of this fact: in a prac-
tical theory we want to take into account the statistical distribution
of the material to which the theory will be applied; cf. Section 2

below.

18

This quite essential problem is usually overlooked in the doc-
trinaire constructivist literature for the following obvious reason (of
which the doctrinaires are certainly not always conscious). Since the
very idea of arithmetic Sruth or non-constructive proof of &mA(n,m)
is rejected, the transformation of p into the program m provides,

p
generally, the first constructive proof of #mA (n,m) and therefore--

according to the doctrine!--the first velid proof. From the doctrinaire
point of view this step is 'fundamental' and the 'detailed study' required

above is, at best, regarded as a refinement.

k. 7. Roth, Mathematika 2 (1955) 1-20; and H. Davenport and K. F. Roth,
Mathematika 2 (1955) 160-167.

>0

C\Cf., e.g., the rephrasing by E. Bishop, Mathematics as a numerical
l.aguage, ppe 53-71 in: Intuitionism and proof theory, Amsterdam 1970,
in particular it ignores the fact how much mathematical practice can be

developed in supsystems of familiar systems (of analysis or set theory).

2lx. s. lehman, Acta arithmetica 11 (196£) 397-410.

2aIndeed, in one of tkz well-known methods in the literature, Hilbert's
¢-substitution method, one speaks of 'critical formulae'; see Hilbert-

Berrass, vol. 2 (1970), p. 2l.

L3

23

There is also an interesting and (therefore?) neglected theoretical
problem of seeing whether the order of magnitude of the existing bounds,

as a funchtion of the syntactic paramet '3 used, is right. For interesting
exceptions, see B. Dreben, P, Andrews, S. Aandera, Bull. A. M. S. 69 (1963)

699-706 and current work by the Leningrad school of proof theorists.
24

Tn the many cas<s where the formalization of ordinary reasoning

involves a reduction to the languzge of predicate logic; as stressed in
IIT §3b, for instance, in the case of gquantifier manipulation to minimize
logical complexity, no such reduction im involved. N.B.: To avoid (a
most unlikely) misunderstanding. It is not the purpoée of this note

(nor of I §3c) to argue against the possibility of using properly com-
puters for 'theorem-proving' or non-numerical computation; I am skeptical
of (the current fashion of) using programs in the language of predicate

logics; cf. also §2c below.

251t is sometimes Torgotten that, for a wide class of problems such
g3 multiplication of large numbers, computérs are superior to a mathe-
matician even if the Zatter is allowed to use all his ingenuity. The
(practical) philosophy in these notes can now be restated as follows:
find new areas ﬁhere this kind of superiority is relevant--rather than
finding complicated mechanical procedures to replace simple uses of
ingenuity. The theoretical objecEions to the "opposite' philosophy were
discussed at the beginning of I §3c. Incidentall&, in the literal sense
of the words a ‘theory of knowledge® might be expected to give us an idea
which (areas of) problems are more easily understood by use of available
mechanical devices and which by available ingenuity. Traditional epistemology
simpiy did not possess these alternatives and therefore had to confine itself
to questions of validity (of knowledge), though some philosophers--from Kant

to Wittgenstein--tried to widen the subject (before it was ripe, 1 think).

6A general discussion of additional (negative) consegquences is given,
e.g., on p. 105, in H. Wang's paper: On the long range prospects of auto-
matic theorem proving, Springer Lecture Notes 125 (1970) 101-111, The con-
clusions drawn overlap (of course) occasionally with those below, but the

general view is not only different from, but in contradiction to, the

by
48

philosophy of these notes; cf. the crucial passage, p. 106, 1. 3 to 1. 9.
Specifically if (a major part of) mathematical reasoning were indeed
mechanical in nature, also the selection of (the major part of the) useful
extensions of the language discussed in I §3c and of restrictions to sub-
classes would have to be mechanized.

2."E.,ga;. H. R, Strong, IBM Research and Development 12 (1968) 4&5-L75

and B, G. Wagner, Trans. A. M. S. 144 (1969) 1-42. The composition
a°b means in Kleene's notation f{al}(b) or {{al(b)}, depending on the

context.

28

Which led him to discover certain decidable second order theories
which have some aesthetically very satisfactory completeness properties,
cf. Trans. A. M. S, 1Ll (1969) 1-35.

297, Milnor, Ann. of Math. 68 (1958) Lih-LL9 and J. F. Adams, Ann.

of Math. 75 (1962) 603-632 for the non-associative case (peérmitting n = 8),

5OIt also goes without saying that, in many cases, the experimenter's
problem, that is, the step from the (theoretically perfectly sound) theo-
retical soclution, to a workable experiment may simply be much more diffi-
cult than the theory.

3y, q. Shepherdson, Bull. Acad. Pol. Sc. 12 (1964) 79-86 and pp-

342-358 in: The theory of models, ed. Addison, Amsterdam, 1965.

52As stressed throughout these notes, general aesthetic criteria
are certainly not reliable since, as elaborated in the introduction,
for example, logicel completeness has very great aesthetic appeal; indeed
abstract questions which we make up ourselves are often more manageable
than the more significant problems and have attraction just because we can

do something about them.

55Significant gquantitative work in the propositional case is contained

in a paper by L. Hodes and E. P. Specker, pp. 175-188 in: Contributicns
to mathematical logic, ed. H. A. Schmidt and K. Schiitte, Amsterdam, 1968.
It does not deal with complexity of propositicnal deductions but of
(propositional) definitions of trufh functions. ©See also footnote 23

of Note 3.

RiC ks
-1 49

IToxt Provided by ERI

54D. Prawitz, Natural deduction, A proof theoretical study, Stockholm
1965.

55Cf., e.g., the paper cited in IV, footnote 26, where also the, in-
cidentally quite unrelated, problem of including = in decidability pro-

cédures is mentioned.

56Cf., e.g., % of my paper JSL 33 (1968) 321-388, with information

on axioms and rules on pp. 366-368.

5'?Cf., for example, the elegant schemata by means of iteration for
the class of primitive recursive functions by R. M. Robinson, Bull. A. M. S.

53 (1947) 925-9L2, where recursion is replaced by iteration.

30

9

97
98
99

100 -

i0l
102
103
104
105
106

107
108
109
110

[KE

112
113

"l
115
116
117
118
119
126
121

‘122
123
124

125
126

127 -
128

129
" 130

131
132
133

134 ..

135

136
o i37
L ."fDecember 18, 1968
' |3‘9 -
140 .

”2149

l50

Q

Emc“ .

PAruntext provided by enic [N

AW =S 'nz o

} . Marchk: |-1 |9u-)
shar
142

, .'I.|43‘,:w
144
145 - .
1467
a7
. 148~

X ;u'.‘r'sl v

‘P. Suppes and C‘ Ihrke.

(Gintinued from inside front cover)

R. C. Atkinson, J. W. Brelsford, and R. M. Shiffrin. Multi-process models for memory with applications to a continuous presentation task.
April 13, 1966. (. math. Psychol., 1967, 4, 277~300). : '

P. Suppes and E. Crothers. Some remarks on stimulus-response theories of language learning. June |2, 1966,

R. Bjork. Alf-or-none subprocesses in the learning of- complex sequences. lJ' math. Psychol., 1968, |, 182-195),

E. Gammon. The statistical determination of lingulstic units, July I, 1966. - - . :

P, Suppes, L. Hyman and M. Jerman. Linear structural modeis For response aTlaEncy per formance In arithmetic. Gn J. P. Hill (ed.),
Minnesota Symposia on Chiid Psychology Minneapolis Mlnn :1967. Pp. 160-200).)

J. L. Young. Effects of intervals between reinforcements- and test trlals in paired-associate learnlng August |, 1966,

H A. Wilson. An lnvestlgatlon ‘of lingulstic unit size in memory processes. August 3, I966.

J. T. Ta«nsend . Choice behavior in a cued-recognition task. August 8, 1966.

w. H. Batchelder A mathematical analysis of multi-level verbal learning. August 9, 1966. v

H. A. Taylor. - The observing response in a cued psychophysical task. August 10, 1966, RS - : .

R. A. Bjork. Learnlng and short-term retention of paired assoclates in relatlon to specific sequences of lnterpresentatlon intervals.
August I, 1966.

R. C. Atkinson and R. M. Shiffrln Some Two-process models for memory. . September 30 I966) :

P. Suppes and C, .lhrke Accelerated program in elementary-school mathematics--the thlrd year January 30, I967

P. Suppes and 1. Rosenthal-Hili. Concept formation by klndergarten chlldren In a ca.rd-sortlng task. 'February 27 l967.

R. C. Atklnscn and.R. M. Shlffrln Human memory: a proposed system and lts control processes.. March 2] l967 .

Theodors S. Rodgers, Linguistic ‘conslderations in the design of the Stanford computer-hased curriculum in lnltlal reading eunel,1967..

Jack M. Knutsoa, Spelllng drills using a computer-assisted lnstructlonel system June 30, l967 T

R. C. Atkinsen. lnstmctlon in initial reading under computer controls .the Stanford Pro_|ect July I4, l967 S

J. W. Brelsfoed, -ir and R. C. Atkinson. Recall of. palred-assoclates as a functlon of overt and covert. rehearsal procedures July 2l l967

J. H. Steizer. ame ‘results concerring subjective probablllty structures wlth semlorders. August 1,1967 . o .

D. E. Rumelhart. Ths =ffects of lnterpresentatlon Intervals on performance ina conl:lnuous palred-assoclate task. -August II, 1967. S

E. J. Fishman, L. Keller; and R. E. Atkinson, Massed vs. distribiited practice in computerized spelllng drills. August 18, 1967.

G. J. Groen. An investigation of somz counting algorithms for simple addition problems. August 2!, I967 ‘ C]

H. A. Wilson and R. . C. Atkinson. Computer-based Instruction in-initial readlng a progress report on the Stanford Pro;ect A_ugust 25, 1967.

F. S. Roberts and P, Suppes. Some problems in the geometry of visual perceptlon August 31,1967. (Synl:hese 1967, 17, i73-201 - -

D. Jamison. Bayesian declsions under total and partlal Ignorance D. ‘Jamlson and J Kozleleckl Subjective probabilltles under total '

© uncertainty, September 4, 1967, ‘ ‘ o B

R.C. Atklnson Computerized instruction and the 'oarnlng Frocess. September l5, l967 .

W. K. Estes. Outline of a theory of punishment. October I, 1967,

T.S. Rodgers Measuring vocabulary difficulty s An analysis of ltem va.rlables in learnlng Russlan-EngIlsh and Japanese-Engllsh vocabulary
parts. Decemberl8, 1967, : 8 S .

W. K. Estes Relnforcement in human Iearnlng Decr.'nber 20, l967 . o .

G. L. Wolford D. L. Wessel, W, K. Estes Further’ ev:dence concerning scanning and sampllng assumptuons of wsual detect|on
_models, January 31, 1968. : : Lo ST

R. C. Atkinson and R. M, Shiffrin, Some: speculations on storage and retrleval processes in long-term memory February 2 l968

.John Holmgren. Visual detection with Imperfect recognlhon March 29,1968.; ‘ S :

Lucille B, Mlodnosky. The Frostig and the Bender Gestalt as predlctors of. read|ng achleveme y

'Aprn 12, I968 ,

P. Supp~s Some theoretical models For mathematlcs learnlng Aprll l5 l968 (Journal of Research and Development |n Ed.:catlon,
1967, 1, 5-22) o o : L g S A

G. M. Olson Learning and retentlon in a contlnuous recognition task Mav i5, l968

.Ruth Norene Hartley. An Investigation of list types and cues to facllltate lnlttal readlng vocabulary act,ulsltlon May 29, l968

. .Suppes Stlmulus-response theory of finite automata June l9 !968
.-Moler and P. Suppes

(InJ C H GenetS‘ and
1968, ‘Pp. 143152 .
oclate Iearn|ng JuIy ', l968

Psychom" Scl., 1968, Il I4! l42)

Quantlfier-free axioms for constructlve plane geometry June 20

. K. Estes and D. P. Horst.
. SchIag-Rey and P Suppes
. M., Snlffrln : - :
. D. Freund, R Lof-tus and R C Atklnson Appllca 'ons ¥ Y t ‘;recognltuon tasks'.‘i

R. C. Atkinson. lnfovmatnon delay in humanlearnlng Decemberl8,l968
R. C. At.k|n50n,J E Hol-ngren andJ F"Juola. Proc

Pe

. 'C Atkmson and T D. chkens. Human mem
. J Tltlev Some model-theoretlc result_

D. Rundus and R; C Atkmson
P, Suppes and S Feldman Young" hi

151
152
153
154
155

156"

157

158 °

159
160
161
162

163
164
165

166
167

‘168
169
170

171
172
173

174
175

176

177
178,
179

180

181
182

'EMC: |

Aruitoxt provided by Eic:

(Continued from insjde back cover.} -

Joaquim H. Laubsch. An adaptive teaching system for optimal item allocation. November 14, 1969. k

Roberta L. Klatzky and Kichard C. Atkinson, Memory scans based on alternative test stimulus representations. November 25, 1969.
John E. Holmgren. Response latency as an indicant of inform: ;ion processing in visual search tasks.. March 16, 1970.°

Patrick Suppes. Probabilistic grammars for natural languages May 15, 1970.

E. Gammon, - A syntactical analysis of some first-grade readers June 22, 1970. ' ‘ .

Kenneth N. Wexler, An automaton analysis of the learning of a nimiature system of Japanese July 24,1970, .

R. C. Atknnson and J.A. Paulson. An approach to the psychology of instruction. August 14, 1970, .
‘R.C. Atkinson, J.D. Fletcher, H.C. Chetln, and C. M ‘Stauffer. lnstruct:on in initial readlng under computer controI the Stanford pro;ect
August 13, 1970 :

Dewey J. Rundus. An anaIysus of rehearsal processes in free recall Auqust 21 1970

R.L. Klatzky, J.F. Juola, and R.C. ‘Atkinson. Test stimulus representation and .experimental context effects in memory scann|ng

William A. Rottmayer A formal theory of perception. ‘November 13, 1970. :

Elizabeth Jane Fishman Loftus. An analys|s of the structural ve*lables that- determlne problem-solvmg drff|cu|ty on a computer—based teletype.
December 18, 1970. : S o : o -

Joseph A. Van Campen. Towards the automatic generatxon of programned foreign-ianguage mstructnonal mater|als Jar'lruary'll} 1971.
Jamesine Friend and R.C. Atkinson.’ Computer-asslsted instruction in programmlng AID.- January 25, 1971. J S
Lawrence James Hubert. A formal model for the perceptual processlng of geometr|c conflgurat|ons February 19, 1971

J. F. Juola, }.S. Fischter, C.T. Wood and R.C. Atklnson Recogmtlon tlme for |r-format|on stored in long-term memory

R.L. Klatzky and R.C. Atkinson. Specnalnzatzon of the cerebral hemnspheres in scannlng for |nformat|on in short-term memory

J.D. Fletcher and R.C. Atkinson, 'An evaluatior: of the Stanford’ CAl program in |n|t|al readmg (grades K. through 3) March 12, 1°71
James F. Juola and R.C, Atkinson. Memory scanning for words versus categories.) . :

Ira S. Fischler and James F. Juola. Effects of repeated tests on recogn|t|on time for mformatnon in Iong-term memory.

Patrnck Suppes. Semantics of context-free fragments of natural languages March 30, 1971 :

Jamesine Friend. Instruct coders' manual. - May 1,1971: » - ‘ o

R.C. Atkinson and R. M. Sh|ffr|n The control processes of short-term memory Aprll 19 1971 o o ‘ .

Patrrclf Suppes. Computer-assisted instruction at Stanford.. May 19,1971, i - ;
D. Jamison, J.D. Fletcher,P. Suppes and'R.C.Atkinson, ' 3~3t and performance of computer-assnsted instruction. for compensatory educat:on

Joszph Offir, Some mathematical mode!s of individual differences in learning and performance. . June 28,1971,
Richard C. Atklnson and Jamas F. Juola: Factors influencing speed and accuracy of word recogn:tlon August 12 1971

P. Suppes, A. Goldberg, G. Kanz, B. Searle and C. Stauffer, Teacher's handbook for CAl courses September 1, 1971
Adele Goldberg A generaI|zed |nstructiona| system for elementary mathematical logic. October 11; 1971, - '
Max Jerman. Instruction .in problem solvlng and an analys|s of structural varlables that contrnhute to’ problem-solvmg dlffxculty November 12 1971

Patrick Suppes. On the grammar and model-theoretic semantlt:s of chlldren 's noun.phrases. November 29 1971 .

Georg Kreisel Five notes on the- appIncatIon of proof theory to computer sclence December 10, 1971

